Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop 'cyborg engineering' for coronary bypass grafting

05.06.2008
New study in the FASEB Journal reports success at combining man-made materials with human cells

A team of London scientists have taken a major step in making the use of artificial veins and arteries in coronary bypass grafts a reality. In a study published in the June 2008 print issue of The FASEB Journal, researchers describe how they developed this artificial graft tissue by combining man-made materials with human cells to make it elastic and durable and so it can attach to host tissue.

"Obviously this advance could be a medical breakthrough that saves millions of lives around the world," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal, "but even more tantalizing is the successful fusing of living cells to nonliving substances that actually—heal—by forming a stronger bond to each other and to host tissue once put in use. This might even be called a start toward 'cyborg engineering.'"

In the research report, scientists describe how they took an elastic scaffold (the material that gives the artificial graft its shape) of compliant poly(carbonate-urea)urethane and incorporated human vascular smooth muscle cells and epithelial cells from umbilical cords. Then they took the artificial grafts and simulated blood flow in the laboratory to test their durability. They found that as the pulsing fluid flow slowly increased, the artificial graft's performance actually improved. The researchers hypothesize that this improvement is because the movement of fluid through the graft stimulates the smooth muscle and epithelial cells to release proteins that strengthen their ability to attachment to the elastic scaffold and other tissues.

"The notion that any body part could be engineered in a lab, attach to existing tissue 'naturally,' and grow stronger as it is being used is something thought completely impossible just 20 years ago," Weissmann added. "It is only a matter of time before human tissues can be engineered to be at least as good as the originals, and this study moves us toward that reality."

According to the National Institutes of Health, coronary artery bypass grafting is the most common open heart surgery in the United States, with 500,000 procedures performed each year. It is one of only a few surgical options to treat coronary artery disease, which is the leading cause of death in the United States.

During this surgery, a healthy vein or artery from another part of the body is connected to the blocked coronary artery to route blood flow around a blocked passage. Current procedures are limited, however, by the availability of healthy veins or arteries as well as the patient's ability to survive both aspects of the procedure. Furthermore, many patients experience significant pain in the area where the vein or artery was removed. Using artificial veins or arteries instead would reduce recovery time, reduce pain, and save lives by making this type of surgery more available to people who need it.

Cody Mooneyhan | EurekAlert!
Further information:
http://www.faseb.org

More articles from Medical Engineering:

nachricht Non-invasive view into the heart
24.06.2019 | Goethe-Universität Frankfurt am Main

nachricht New imaging modality targets cholesterol in arterial plaque
14.06.2019 | SPIE--International Society for Optics and Photonics

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>