Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnet-controlled camera in the body

04.06.2008
Images from inside the body? It can be done with tiny cameras which the patient has to swallow. In the past there was no way of controlling the device as it passed through the body. Now it can be steered and stopped where desired, and even deliver images of the esophagus.

Images of the inside of the intestine can be obtained even today: The patient swallows a camera that is no larger than a candy. It makes its way through the intestine and transmits images of the intestinal villi to an external receiver which the patient carries on a belt.

This device stores the data so that the physician can later analyze them and identify any hemorrhages or cysts. However, the camera is not very suitable for examinations of the esophagus and the stomach. The reason is that camera only takes about three or four seconds to make its way through the esophagus – producing two to four images per second – and once it reaches the stomach, its roughly five-gram weight causes it to drop very quickly to the lower wall of the stomach.

In other words, it is too fast to deliver usable images. For examinations of the esophagus and the stomach, therefore, patients still have to swallow a rather thick endoscope.

In collaboration with engineers from the manufacturer Given Imaging, the Israelite Hospital in Hamburg and the Royal Imperial College in London, researchers from the Fraunhofer Institute for Biomedical Engineering in Sankt Ingbert have developed the first-ever control system for the camera pill. “In future, doctors will be able to stop the camera in the esophagus, move it up and down and turn it, and thus adjust the angle of the camera as required,” says IBMT team leader Dr. Frank Volke.

“This allows them to make a precise examination of the junction between the esophagus and the stomach, for if the cardiac sphincter is not functioning properly, gastric acid comes up the esophagus and causes heartburn. In the long term, this may even cause cancer of the esophagus. Now, with the camera, we can even scan the stomach walls.” But how do the researchers manage to steer the disposable camera inside the body? “We have developed a magnetic device roughly the size of a bar of chocolate. The doctor can hold it in his hand during the examination and move it up and down the patient’s body. The camera inside follows this motion precisely,” says Volke.

The steerable camera pill is constructed in much the same way as its predecessor: It consists of a camera, a transmitter that sends the images to the receiver, a battery and several cold-light diodes which briefly flare up like a flashlight every time a picture is taken. One prototype of the camera pill has already passed its first practical test in the human body. The researchers demonstrated in a self-experiment that the camera can be kept in the esophagus for about ten minutes, even if the patient is sitting upright.

Press Office | alfa
Further information:
http://www.fraunhofer.de/EN
http://www.fraunhofer.de/EN/bigimg/2008/rn6fo1g.jsp

More articles from Medical Engineering:

nachricht New quantum material could warn of neurological disease
11.04.2019 | Purdue University

nachricht High-strength MRI tracks MS progression
09.04.2019 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>