Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advanced MRI Studies Provide New Insight on Early Parkinson's Disease

21.04.2008
Parkinson's disease is a degenerative disorder of the brain affecting movement, speech, mood, behavior, thinking and sensation for which there is no known cause or cure.

Two studies from the University at Buffalo being presented at the 2008 American Academy of Neurology meeting in Chicago shed new light on very early development of the disease.

The work is the result of a joint project by neurology and imaging specialists from UB, Stavanger University Hospital and University of Bergen, both in Norway.

Turi O. Dalaker, M.D., a doctoral fellow from Stavanger University Hospital who conducted the research in the Buffalo Neuroimaging Analysis Center (BNAC), is first author on both studies. The BNAC, housed in Kaleida Health's Buffalo General Hospital, is part of the Jacobs Neurological Institute, the Department of Neurology in the UB School of Medicine and Biomedical Sciences.

The symptoms of Parkinson's disease (PD) result from disintegration of the brain's white matter, the network of nerves that transport messages to the various brain regions, and grey matter, the brain regions where those messages are received, interpreted and acted upon.

Using advanced magnetic resonance imaging (MRI) technologies available at the Buffalo Neuroimaging Analysis Center (BNAC), the researchers can identify brain regions linked to Parkinson's disease based on images showing the status of both white and grey matter.

One study, a case-control investigation, compared brain MRI scans and scores on the Mini-Mental State Examination (MMSE), a standard mental screening test, of 155 patients diagnosed with early Parkinson's disease with those of 101 normal subjects. Results will be presented today (April 17, 2008).

This study describes one of the first large-scale analyses of the extent of global (overall), tissue-specific and regional brain atrophy, and white matter hyperintensities (WMH). WMH are diseased areas of the white matter seen commonly in brain MRI scans in the elderly.

Results showed that in Parkinson's patients, white matter hyperintensities were associated significantly with lower scores on the mental test: The more areas of hyperintensity, the lower the MMSE score.

"The relationship between higher white matter hyperintensities and lower MMSE scores in PD provide a possible explanation for cognitive impairment in PD," said Dalaker.

The second study examined whether mild cognitive impairment in early PD is associated with atrophy of a specific brain region. The researchers were interested also in investigating the possible link between mild cognitive impairment in PD and a higher risk of developing dementia. Results were presented April 16.

Applying an MRI analytical process called voxel-based morphology, Dalaker and colleagues analyzed high-resolution MRI scans of 43 newly diagnosed PD patients and those of 31 sex-matched normal controls.

They found that the PD patients with mild cognitive impairment showed a trend toward reduced grey matter in the cingulate area, a brain region associated with cognitive performance.

"This study shows that cingulate atrophy is associated with early cognitive deficit in PD," said Dalaker, "and might serve as a possible biomarker for increased risk of developing dementia in PD."

The subjects in both studies were part of The Norwegian ParkWest project, a four-center prospective longitudinal cohort study of patients with PD from southwestern Norway. The project involves 265 patients with early stage incident PD, their caregivers and a control group of 205 subjects with similar age- and sex- distribution. The researchers plan to follow this sample for 10 years.

Additional contributors to the cingulate study from the BNAC were Robert Zivadinov, M.D., Ph.D., UB associate professor of neurology and director of the BNAC, Jennifer Cox, Ph.D., and Ronald Antulov, M.D.

Jan P. Larsen, M.D., Ph.D.; Mona Beyer, M.D., Ph.D.; Guido Alves, M.D., Ph.D.; Kolbjorn Bronnick, and Dag Aarsland, M.D., Ph.D., all researchers from Stavanger, Norway, and Ole-Bjorn Tysnes, M.D., Ph.D., from Bergen, Norway, also contributed to this study.

All of the above were involved in the WMH study, plus Niels Bergsland and Michael Dwyer from the BNAC, and Arpad Kelemen, Ph.D., and Ralph Benedict, Ph.D., UB associate professors of neurology.

Dalaker's BNAC research was supported by a Dr. Larry D. Jacobs Fellowship, The Leiv Eiriksson mobility programme through the Research Council of Norway, and a grant from the Norwegian Society of Radiology. The Norwegian ParkWest study was funded in part by the Western Norway Regional Health Authority and the Research Council of Norway.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities. The School of Medicine and Biomedical Sciences, School of Dental Medicine, School of Nursing, School of Pharmacy and Pharmaceutical Sciences and School of Public Health and Health Professions are the five schools that constitute UB's Academic Health Center.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Medical Engineering:

nachricht Nerve-on-a-chip platform makes neuroprosthetics more effective
23.10.2018 | Ecole Polytechnique Fédérale de Lausanne

nachricht Accurate evaluation of chondral injuries by near infrared spectroscopy
22.10.2018 | University of Eastern Finland

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: memory-steel - a new material for the strengthening of buildings

A new building material developed at Empa is about to be launched on the market: "memory-steel" can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically. The Empa spin-off re-fer AG is now presenting the material with shape memory in a series of lectures.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This re-quires ducts for guiding the tension cables, anchors for...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

 
Latest News

Weighing planets and asteroids

23.10.2018 | Physics and Astronomy

Fiber-based quantum communication - Interference of photons using remote sources

23.10.2018 | Information Technology

'Mushrooms' and 'brushes' help cancer-fighting nanoparticles survive in the body

23.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>