Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comprehensive diagnosis of heart disease with a single CT scan

06.03.2008
Medical University of South Carolina team reports initial findings

In the current issue of the journal Circulation, a research team from the Medical University of South Carolina’s (MUSC) Heart & Vascular Center report their initial experience with a novel imaging technique that enables comprehensive diagnosis of heart disease based on a single computerized tomographic (CT) scan.

The team, led by Balazs Ruzsics, MD, PhD; Eric Powers, MD, medical director of MUSC Heart and Vascular Center; and U. Joseph Schoepf, MD, director of CT Research and Development, explored how CT scans can now detect blocked arteries and narrowing of the blood vessels in the heart in addition to poor blood flow in the heart muscle.

The single-scan technique would also provide considerable cost savings, as well as greater convenience and reduced radiation exposure for patients. For their approach, the MUSC physicians used a Dual-Source CT scanner. The MUSC scanner was the first unit worldwide that was enabled to acquire images of the heart with the “dual-energy” technique. While the CT scan “dissects” the heart into thin layers, enabling doctors to detect diseased vessels and valves, it could not detect blood flow. The MUSC researchers added two x-ray spectrums, each emitting varying degrees of energy like a series of x-rays, to gain a static image of the coronary arteries and the heart muscle. This dual-energy technique of the CT scan enables mapping the blood distribution within the heart muscle and pinpointing areas with decreased blood supply.

All this is accomplished with a single CT scan within one short breath-hold of approximately 15 seconds or less. In addition to diagnosing the heart, the CT scan also permits doctors to check for other diseases that may be lurking in the lungs or chest wall.

MUSC physicians have long championed the use of CT scans of the heart to detect blockages or narrowing of heart vessels as harbingers of a heart attack without the need for an invasive heart catheterization.

However, for a comprehensive diagnosis of coronary artery disease, MUSC, like most cardiovascular centers, had traditionally relied on several imaging modalities, such as cardiac catheterization, nuclear medicine or magnetic resonance (MR) scanners.

“This technique could be the long coveted “one-stop-shop” test that allows us to look at the heart vessels, heart function and heart blood flow with a single CT scan and within a single breath-hold” said Dr. Schoepf, the lead investigator of the study.

Based on their initial observations, Heart & Vascular Center physicians have launched an intensive research project aimed at systemically comparing the new scanning technique to conventional methods for detecting decreased blood supply in the heart muscle.

Their research has been significantly enhanced by the recent move to a new, state-of-the-art facility, MUSC Ashley River Tower, which provides MUSC physicians with the most cutting edge cardiovascular imaging equipment, all in one convenient, patient-friendly location.

About MUSC

Founded in 1824 in Charleston, the Medical University of South Carolina is the one of the oldest medical schools in the United States. Today, MUSC continues the tradition of excellence in education, research and patient care. MUSC is home to more than 3,000 students and residents, as well as more than 10,000 employees, including 1,300 faculty members. As the largest non-federal employer in Charleston, the University and its affiliates have collective budgets in excess of $1.5 billion per year. MUSC operates a 600 bed medical center, which includes a nationally recognized Children’s Hospital and a leading Institute of Psychiatry.

Kathleen Ellis | EurekAlert!
Further information:
http://www.musc.edu
http://www.muschealth.com

More articles from Medical Engineering:

nachricht Faster detection of atrial fibrillation thanks to smartwatch
18.03.2019 | Universität Greifswald

nachricht A peek into lymph nodes
15.03.2019 | Tohoku University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>