Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First look: Princeton researchers peek into deepest recesses of human brain

03.03.2008
A team of scientists from Princeton University has devised a new experimental technique that produces some of the best functional images ever taken of the human brainstem, the most primitive area of the brain.

The scientists believe they may be opening the door to inquiries into a region that acts as the staging area for the brain chemicals whose overabundance or absence in other parts of the brain are at the root of many neuropsychiatric disorders, like addiction, schizophrenia and Parkinson's disease.

Reporting in the Feb. 28 edition of Science, the scientists describe using functional magnetic resonance imaging to study brainstem activity in dehydrated humans. The scanning technique allows researchers to watch the brain in action.

The subjects were participating in classical conditioning experiments in which they were presented with a visual clue, then, at varying intervals, given a drink. The researchers were able to track changes in blood flow in areas of the brainstem associated with enhanced activity of the brain chemical dopamine -- as the person experienced either pleasure or disappointment at receiving or not receiving the reward.

"For a long time, scientists have tried looking at this area of the brain and have been unsuccessful -- it's just too small," said Kimberlee D'Ardenne, the lead author on the paper. Until now, scientists wanting to use brain scans to study brain chemicals like dopamine were relegated to watching its effects in other more accessible parts of the brain, like the prefrontal cortex and ventral striatum. However, this was downstream of its source, and therefore possibly much less accurate, D'Ardenne said.

"We wanted to try because the brainstem is so important to activities in the rest of the brain," said D'Ardenne, a doctoral student in the Department of Chemistry. "We believe it could be a key to understanding all kinds of important behavior."

For the research, D'Ardenne collaborated with Jonathan Cohen, co-director of the Princeton Neuroscience Institute, and Samuel McClure and Leigh Nystrom, other institute scientists. They conducted the studies on the University's own brain scanner located on campus in Green Hall.

Cohen noted that these findings provide a critical link between studies in non-human animals that have looked directly at the activity of dopamine cells in the brainstem and studies in humans of behaviors thought to be related to dopamine. "It could also open up entirely new avenues of study," he said.

The team was able to develop high-resolution images that tracked the activity of tiny clusters of dopamine neurons. They weeded out distortions caused by many pulsing blood vessels in the brainstem. They also employed computerized rules of thumb known as algorithms and imaging techniques to reduce the effects of head movement and combine images from different subjects.

The MRI device produces three-dimensional images that show what portions of the brain engage during actions and thought processes. This allows the investigators to correlate physical processes with mental activities with unprecedented precision.

The brain stem, a tiny, root-shaped structure, is the lower part of the brain and sits atop the spinal cord. The area controls brain functions necessary for survival, such as breathing, digestion, heart rate, blood pressure and arousal. The brain structure also serves as the home base for the brain chemicals, also known as neuromodulators, such as dopamine, serotonin and norepinephrine. The chemicals spring forth into other brain regions from there, zipping along routes called axons.

The team's experiments confirmed results already seen in animal studies. Blood flow increased in dopamine centers of the brainstem when test subjects were happily surprised with a reward. However, there was no activity when participants received less than what they expected, a finding that is different from the results of previous studies looking farther downstream.

"We are just at the beginning of understanding these crucial pathways," D'Ardenne said. "But it gives us a hint about what is possible to know."

The tiny clumps of cells containing neuromodulator chemicals in the brainstem, called nuclei, have long been known to play a critical role in the regulation of brain function, and disturbances of these systems have been implicated in most psychiatric disorders, from addiction to schizophrenia, D'Ardenne said.

The Princeton group wants to understand how the brain's physical structures give rise to the functions of the mind, a field known as cognitive neuroscience.

For years, neuroscientists focused on the brain while psychologists dealt with the mind. The new field combines both and is being powered by scientific advances in brain imaging and gene manipulation that allows researchers to record and measure the activity of brain cells as humans or animals perform mental tasks.

Kitta MacPherson | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Medical Engineering:

nachricht Implantable transmitter provides wireless option for biomedical devices
04.08.2020 | Purdue University

nachricht Certainty in just 15 minutes – researchers develop a graphene oxid based rapid test to detect infections
03.08.2020 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>