NYU, Tel Aviv University create non-invasive imaging method for diagnosing osteoarthritis

The research team examined glycosaminogycans (GAGs), which are molecules that serve as the building blocks of cartilage and are involved in numerous vital functions in the human body. Mapping the GAG concentration in vivo, or in a living organism, is desirable for the diagnosis and monitoring of a number of diseases. It is also valuable in determining the efficacy of drug therapies. For instance, GAG loss in cartilage typically marks the onset of osteoarthritis and inter-vertebral disc degeneration.

However, the existing techniques for GAG monitoring—based on traditional magnetic resonance imaging (MRI)—have limitations: they cannot directly map GAG concentrations or they require the administration of contrast agents. The NYU-Tel Aviv research team sought a more direct measurement of GAGs. In this study, they employed the exchangeable protons of GAG to directly measure GAG concentration in vivo.

Knowing that GAG molecules have proton groups that are not tethered tightly, the researchers investigated whether proton exchange in GAGs could allow concentrations of the molecule to be measured by the MRI. By separating out the GAG protons from those of water, they can be used as a sort of inherent contrast agent. Testing the idea in tissue samples, the researchers found that the available GAG protons provided an effective type of contrast enhancement, allowing them to readily monitor GAGs through a clinical MRI scanner. The in vivo application of this method showed that this technique can be readily implemented in a clinical setting.

This chemical exchange saturation method (gagCEST) not only could provide a non-invasive way to diagnose osteoarthritis in its very early stages, but could also help to indicate early interventions for degenerative disc disease, which is responsible for lower back pain, and defects in heart valves and, potentially, the cornea.

Media Contact

James Devitt EurekAlert!

More Information:

http://www.nyu.edu

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors