Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU, Tel Aviv University create non-invasive imaging method for diagnosing osteoarthritis

12.02.2008
Researchers at New York University and Tel Aviv University have developed a non-invasive imaging method that can be used to diagnose and monitor a number of diseases, including osteoarthritis and inter-vertebral disc degeneration, in their early stages. Their work appears in the latest issue of the journal Proceedings of the National Academy of Sciences (PNAS).

The research team examined glycosaminogycans (GAGs), which are molecules that serve as the building blocks of cartilage and are involved in numerous vital functions in the human body. Mapping the GAG concentration in vivo, or in a living organism, is desirable for the diagnosis and monitoring of a number of diseases. It is also valuable in determining the efficacy of drug therapies. For instance, GAG loss in cartilage typically marks the onset of osteoarthritis and inter-vertebral disc degeneration.

However, the existing techniques for GAG monitoring—based on traditional magnetic resonance imaging (MRI)—have limitations: they cannot directly map GAG concentrations or they require the administration of contrast agents. The NYU-Tel Aviv research team sought a more direct measurement of GAGs. In this study, they employed the exchangeable protons of GAG to directly measure GAG concentration in vivo.

Knowing that GAG molecules have proton groups that are not tethered tightly, the researchers investigated whether proton exchange in GAGs could allow concentrations of the molecule to be measured by the MRI. By separating out the GAG protons from those of water, they can be used as a sort of inherent contrast agent. Testing the idea in tissue samples, the researchers found that the available GAG protons provided an effective type of contrast enhancement, allowing them to readily monitor GAGs through a clinical MRI scanner. The in vivo application of this method showed that this technique can be readily implemented in a clinical setting.

This chemical exchange saturation method (gagCEST) not only could provide a non-invasive way to diagnose osteoarthritis in its very early stages, but could also help to indicate early interventions for degenerative disc disease, which is responsible for lower back pain, and defects in heart valves and, potentially, the cornea.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>