Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Z-shaped incision enhances minimally invasive surgery

19.12.2007
A novel surgical technique allowing doctors to operate on patients by making a Z-shaped incision inside the stomach could potentially replace certain types of conventional surgery in humans, according to Penn State medical researchers who have successfully demonstrated the procedure in pigs.

If the technique ultimately proves successful in human trials, researchers say it could circumvent the long painful recovery times and medical complications associated with surgery.

The new approach, known as NOTES (natural orifice transluminal endoscopic surgery), involves using a natural opening in the body, in this case the mouth, to advance a flexible video endoscope into the stomach.

Using this tube, and the instruments contained within it, doctors currently make a small straight incision in the stomach to gain access to the abdominal cavity and the organs requiring attention.

"Theoretically, by eliminating body wall wounds with their associated complications and allowing some procedures to be done without general anesthesia, this method could leave a truly minimal surgical footprint, and may even allow certain procedures to be done outside a traditional operating room," said Matthew Moyer, M.D., a gastroenterology fellow at Penn State Milton S. Hershey Medical Center.

But he cautioned that NOTES is still in the developmental phases and even a simple procedure may be fraught with potential complications at this point.

"One of those barriers is the closure of the access site," said Moyer. "In other words, the opening made in the stomach must be reliably and safely sealed off at the end of the procedure."

Moyer and his Hershey Medical Center colleagues Eric M. Pauli, M.D.,resident surgeon; Randy S. Haluck, M.D., director of minimally invasive surgery and assistant professor, and Abraham Mathew, M.D., director of endoscopy and assistant professor, all at Penn State College of Medicine, believe their technique elegantly solves the problem.

The key to their approach lies in the way the flexible probe exits the stomach. Instead of cutting straight through the stomach wall the researchers guide the endoscope so that it first tunnels under the mucous membrane of the stomach wall for a while before exiting near an organ to be operated on. The endoscope essentially charts a Z-shaped path.

This new technique, known as STAT (self-approximating transluminal access technique), has two main advantages according to Moyer. There is significantly less bleeding involved and the Z-shaped tract effectively seals itself due to pressure created on the abdominal wall by normal breathing.

The team published its findings in a recent issue of Gastrointestinal Endoscopy.

The technique has other advantages as well. "Most people operate straight through the gastric wall and then use a bunch of complex maneuvers to get the endoscope where it needs to be," said Pauli. "And it can get difficult to operate because the endoscope is upside down and in a reverse position."

By tunneling through instead, he points out, doctors can maintain a directional sense and guide the endoscope more accurately.

"There are landmarks in the mucous membrane such as specific blood vessels and groupings of blood vessels. We can also see through the wall of the stomach in some areas to guide the endoscope to the organ we want to operate on," Pauli said.

The researchers have so far operated on 17 animals and only one of them has developed a minor complication.

Once they have perfected their tunneling technique, Moyer and colleagues will try to figure out how exactly to remove surgical specimens from an operation.

"The gall bladder, small tumors, even the ovaries are potentially removable through this technique," said Mathew. "We could in theory make the tunnel as big as we want, and take something out into the stomach and cut it into small pieces before extracting it."

If successful, the procedure in humans could translate into significantly shorter recovery times, little or no pain, less anesthesia and without surgical scars. But the researchers acknowledge it may be a while before their surgical technique reaches human trials.

Mathew said he and his colleagues are confident that their technique lets them get the endoscope out of the stomach and back in safely with currently available instruments. "We have to perfect the technique so we can fully understand the risks," he added.

The Penn State researcher envisions minimally invasive surgery being employed to help patients who are critically ill and may not be able to tolerate a traditional surgery or leave the ICU. In such cases, doctors could access the internal organs and perform procedures such as a biopsy to make a better diagnosis or even perform intestinal bypass surgery.

According to Pauli, these findings could accelerate the pace of research in minimally invasive surgery and ease the way for other breakthroughs.

"We are looking at some fundamental questions: can we get the endoscope in safely, can we get it out safely, and can we get it at the organ we want to operate on. Those are the questions nobody has really answered," he said.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu
http://www.hmc.psu.edu/gi/

More articles from Medical Engineering:

nachricht Blood biopsy: New technique enables detailed genetic analysis of cancer cells
16.05.2019 | University of Michigan

nachricht Detecting dementia's damaging effects before it's too late
14.05.2019 | University of Arizona

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>