Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Perfusion in burn injuries rapidly determined by using improved laser-Doppler technology

14.12.2007
The perfusion of a burn injury can now rapidly be determined by using a new technique developed by scientists of the University of Twente.

Using the perfusion image made by a laser and an ultra fast camera, doctors will be able to determine whether a burn needs surgery. The new measuring device, developed under supervision of dr. Wiendelt Steenbergen of the Biophysical Engineering group, has been successfully tested at the hospital Martini Ziekenhuis in Groningen.

Tests in hospital show that the system is perfectly capable of measuring differences in perfusion in burn wounds; patients and medical staff are positive about the high speed of the system and the quality of the images.

A burn that shows good perfusion, has a better chance of healing by itself: no surgery is needed. In many cases, the visual inspection is not sufficient to take a decision on the necessity of surgery. This can lead to unnecessary surgery or, on the other hand, to unwanted delays when surgery is the best option. Compared to current perfusion measurements, the new technique is much faster. Scanning techniques take minutes of time for some square centimeters of skin, during which time the patient is not allowed to move. The new technique will be capable of imaging an entire surface of ten by ten centimeter in a fraction of a second.

Doppler effect
In order to reach this high speed, the entire surface is lit at once using a wide laser beam. A high speed camera, capable of taking 27000 shots per second, takes images of the tissue. Whenever laser light is scattered by moving rood blood cells, this is visible in the intensity of the pixels; due to the Doppler effect, a colour shift will be visible. From the resulting ‘movie’ of the tissue, a perfusion image can be made.

Apart from this promising application in determing perfusion in burn injuries, Wiendelt Steenbergen predicts other applications, for example in evaluating the uptake of medication through the skin, or in testing allergic reactions. In evaluating diabetic micro circulation problems, the new technique could be an attractively fast alternative to current approaches as well.

Wiebe van der Veen | alfa
Further information:
http://www.utwente.nl
http://bpe.tnw.utwente.nl

More articles from Medical Engineering:

nachricht NUS scientist designs 'express courier service' for immune cells
07.10.2019 | National University of Singapore

nachricht Optical imager poised to improve diagnosis and treatment of dry eye disease
07.10.2019 | The Optical Society

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

How to control friction in topological insulators

14.10.2019 | Physics and Astronomy

The shelf life of pyrite

14.10.2019 | Earth Sciences

Shipment tracking for "fat parcels" in the body

14.10.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>