Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reimagining MRI contrast: Iron outperforms gadolinium

23.08.2018

Rice U. nanophotonics lab creates iron-based TI contrast agent for MRI

Rice University nanoscientists have demonstrated a method for loading iron inside nanoparticles to create MRI contrast agents that outperform gadolinium chelates, the mainstay contrast agent that is facing increased scrutiny due to potential safety concerns.


Scientists at Rice's Laboratory for Nanophotonics added iron chelates (blue) and fluorescent dye (red) to multi-layered gold nanomatryoshkas to create particles that can be used for disease therapy and diagnostics. The 'theranostic' nanoparticles have a core of gold (left) that is covered by silica containing the diagnostic iron and dye, which is covered by an outer shell of gold. The particles are about 20 times smaller than a red blood cell, and by varying the thickness of the layers, LANP scientists can tune the nanomatryoshkas to convert light into cancer-killing heat.

Credit: Luke Henderson/Rice University

Usage Restrictions: For news reporting purposes only.

"The possibility of eliminating gadolinium exposure and getting a two-fold improvement in T1 MRI contrast performance is going to intrigue radiologists," said Rice's Naomi Halas, the lead researcher on the project. "When they hear we've done this with iron I expect they will be very surprised."

Contrast agents are drugs that improve MRI images and make them easier for radiologists to interpret. Radiologists can "weight" the results of an MRI and make specific tissues appear either brighter or darker by varying the conditions of the test. Two weighting techniques -- T1 and T2 -- are used. While iron-based contrast agents are frequently employed for T2 scans, there are few clinically available alternatives to gadolinium for T1 tests.

... more about:
»CANCER »Iron »MRI »Nanoparticles »fluorescent dyes »ions »nuclei »scans

"Iron chelates aren't new," Halas said. "It's widely believed they are wholly impractical for T1 contrast, but this study is a perfect illustration of how differently things can behave when you engineer at the nanoscale."

Halas and colleagues from Rice and the University of Texas MD Anderson Cancer Center describe their findings in a paper available online in the American Chemical Society journal ACS Nano. In the study, they created a modified version of nanomatryoshkas, concentric layered nanoparticles that draw their name from Russian nesting dolls.

Nanomatryoshkas and nanoshells, another layered nanoparticle Halas invented at Rice more than 20 years ago, are about 20 times smaller than a red blood cell and made up of layers of conductive metal and non-conductive silica. By varying the thickness of the layers, Halas' team tunes the particles to interact with specific wavelengths of light. For instance, both nanoshells and nanomatryoshkas can convert otherwise harmless near-infrared light to heat. This localized, intense heating has been used to destroy cancer in several trials of nanoshells, including an ongoing trial for the treatment of prostate cancer.

The new study is the latest chapter in Halas' efforts to create light-activated nanoparticles with a combination of therapeutic and diagnostic features. These "theranostic" particles could allow clinicians to diagnose and treat cancer in the same office or hospital visit.

Luke Henderson, a Rice graduate student and lead author of the ACS Nano paper, said, "If clinicians could visualize the particles through some sort of imaging, therapy could be faster and more effective. For example, imagine a scenario where a scan is performed to verify the size and placement of the tumor, heat is then generated to treat the tumor and another scan follows to verify that the entire tumor was destroyed."

When Henderson, a chemist, joined Halas' Laboratory for Nanophotonics in 2016, Halas' team had already shown it could add fluorescent dyes to nanomatryoshkas to make them visible in diagnostic scans. Work was also underway on a study published in 2017 that showed gadolinium chelates could be embedded in the silica layer for MRI contrast.

MRI scanners image the body's interior by briefly aligning the nuclei of hydrogen atoms and measuring how long it takes the nuclei to "relax" to their resting state. Relaxation properties vary by tissue, and by repeatedly aligning nuclei and measuring relaxation times, an MRI scanner builds a detailed image of the body's organs, tissues and structures. Contrast agents improve scan resolution by increasing the relaxation rate of particles.

Gadolinium chelates revolutionized MRI testing when they were introduced in the late 1980s and have been used more than 400 million times. Though gadolinium is a toxic metal, the chelating process covers each gadolinium ion with an organic wrap that reduces exposure and allows the drug to pass from the body via urination within a few hours

In 2013, Japanese scientists made the surprising discovery that gadolinium from contrast agents had accumulated in the brains of some patients, and subsequent studies found similar deposits in bones and other organs. While no adverse health effects have been associated with gadolinium-based MRI contrast agents, the FDA required drug makers to add warnings to the medication guides for eight widely used gadolinium-based contrast agents in December 2017.

"In the earlier work with gadolinium, we noticed that the nanomatryoshka design enhanced the relaxivities of the embedded gadolinium chelates," Henderson said. "At the same time, we were hearing more calls from the medical community for alternatives to gadolinium, and we decided to try iron chelates and see if we got the same sort of enhancement."

The results surprised everyone. Not only was Henderson able to boost the relaxivities for iron, he was able to load about four times more iron into each nanomatryoshkas. That allowed the iron-laden nanomatryoshkas to perform twice as well as clinically available gadolinium chelates.

Henderson also found a generic way to change the type of metal that was loaded. By adding unloaded chelate molecules to the silica first, he found he could load metal by soaking the particles in a bath of metal salts. By changing the metals in the bath, he found he could easily load different paramagnetic ions, including manganese, into the nanomatryoshkas.

After the metal ions were loaded into the silica, the final layer of the nanomatryoshka, the outer gold shell, was added. The shell, which is vital for plasmonics, also serves as barrier to prevent ion leeching. Henderson said the gold barrier also had a secondary benefit for the fluorescent dyes he added for dual-mode diagnostics.

"All fluorescent dyes are subject to photo bleaching, which means they fade over time and eventually won't give off a measureable signal," Henderson said. "Even if you freeze them, which slows down bleaching, they typically don't last more than a couple of weeks. I was looking at an old sample of nanomatryoshkas that had been in the fridge for months, and I found they were still fluorescing quite well. When we looked more closely at this we found the dyes were about 23 times more stable when they were inside the nanomatryoshkas."

###

Halas is Rice's Stanley C. Moore Professor of Electrical and Computer Engineering and professor of chemistry, bioengineering, physics and astronomy, and materials science and nanoengineering.

Additional co-authors include Oara Neumann, Runmin Zhang and Peter Nordlander, all of Rice; Valeria Marangoni, formerly of Rice and currently with the Graphene and Nanomaterials Research Center at Mackenzie Presbyterian University in São Paulo; and Caterina Kaffes, Murali Ravoori, Vikas Kundra and James Bankson, all of MD Anderson.

The research was supported by the J. Evans Attwell-Welch Fellowship program from Rice's Smalley-Curl Institute, the Robert A. Welch Foundation, the São Paulo Research Foundation, the National Cancer Institute and the National Institutes of Health.

Halas is co-founder of Nanospectra Biosciences, the Houston-based company that is developing and sponsoring clinical trials of photothermal therapies for cancer and other diseases based on her nanoparticles.

A copy of the paper is available at: https://pubs.acs.org/doi/abs/10.1021/acsnano.8b03368

Other photonics research stories from Rice:

Nanoshells could deliver more chemo with fewer side effects -- Nov. 8, 2017 http://news.rice.edu/2017/11/08/nanoshells-could-deliver-more-chemo-with-fewer-side-effects/

Freshwater from salt water using only solar energy -- June 19, 2017 http://news.rice.edu/2017/06/19/freshwater-from-salt-water-using-only-solar-energy/

Rice lab expands palette for color-changing glass -- March 8, 2017 http://news.rice.edu/2017/03/08/rice-lab-expands-palette-for-color-changing-glass/

Rice's 'antenna-reactor' catalysts offer best of both worlds -- July 18, 2016 http://news.rice.edu/2016/07/18/rices-antenna-reactor-catalysts-offer-best-of-both-worlds/

Rice experts unveil submicroscopic tunable, optical amplifier -- May 9, 2016 http://news.rice.edu/2016/05/09/rice-experts-unveil-submicroscopic-tunable-optical-amplifier/

Nanoscale drawbridges open path to color displays -- Dec. 4, 2015 http://news.rice.edu/2015/12/04/nanoscale-drawbridges-open-path-to-color-displays/

Rice finding could lead to cheap, efficient metal-based solar cells -- July 22, 2015 http://news.rice.edu/2015/07/22/rice-finding-could-lead-to-cheap-efficient-metal-based-solar-cells/

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!
Further information:
http://dx.doi.org/10.1021/acsnano.8b03368

Further reports about: CANCER Iron MRI Nanoparticles fluorescent dyes ions nuclei scans

More articles from Medical Engineering:

nachricht MoreGrasp: significant research results in the field of thought-controlled grasp neuroprosthetics
17.09.2018 | Technische Universität Graz

nachricht Wearable ultrasound patch monitors blood pressure deep inside body
13.09.2018 | University of California - San Diego

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Glacial engineering could limit sea-level rise, if we get our emissions under control

20.09.2018 | Earth Sciences

Warning against hubris in CO2 removal

20.09.2018 | Earth Sciences

Halfway mark for NOEMA, the super-telescope under construction

20.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>