Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quick test finds signs of sepsis in a single drop of blood

03.07.2017

A new portable device can quickly find markers of deadly, unpredictable sepsis infection from a single drop of blood.

A team of researchers from the University of Illinois and Carle Foundation Hospital in Urbana, Illinois, completed a clinical study of the device, which is the first to provide rapid, point-of-care measurement of the immune system's response, without any need to process the blood.


University of Illinois researchers and physicians at Carle Foundation Hospital developed a rapid test for sepsis that counts white blood cells and protein markers on their surface to monitor a patient's immune response.

Image by Janet Sinn-Hanlon

This can help doctors identify sepsis at its onset, monitor infected patients and could even point to a prognosis, said research team leader Rashid Bashir, a professor of bioengineering at the U. of I. and the interim vice dean of the Carle Illinois College of Medicine. The researchers published their findings in the journal Nature Communications.

Sepsis is triggered by an infection in the body. The body's immune system releases chemicals that fight the infection, but also cause widespread inflammation that can rapidly lead to organ failure and death.

Sepsis strikes roughly 20 percent of patients admitted to hospital intensive care units, yet it is difficult to predict the inflammatory response in time to prevent organ failure, said Dr. Karen White, an intensive care physician at Carle Foundation Hospital. White led the clinical side of the study.

"Sepsis is one of the most serious, life-threatening problems in the ICU. It can become deadly quickly, so a bedside test that can monitor patient's inflammatory status in real time would help us treat it sooner with better accuracy," White said.

Sepsis is routinely detected by monitoring patients' vital signs - blood pressure, oxygen levels, temperature and others. If a patient shows signs of being septic, the doctors try to identify the source of the infection with blood cultures and other tests that can take days - time the patient may not have.

The new device takes a different approach.

"We are looking at the immune response, rather than focusing on identifying the source of the infection," Bashir said. "One person's immune system might respond differently from somebody else's to the same infection. In some cases, the immune system will respond before the infection is detectable. This test can complement bacterial detection and identification. We think we need both approaches: detect the pathogen, but also monitor the immune response."

The small, lab-on-a-chip device counts white blood cells in total as well as specific white blood cells called neutrophils, and measures a protein marker called CD64 on the surface of neutrophils. The levels of CD64 surge as the patient's immune response increases.

The researchers tested the device with blood samples from Carle patients in the ICU and emergency room. When a physician suspected infection and ordered a blood test, a small drop of the blood drawn was given to the researchers, stripped of identifying information to preserve patient confidentiality. The team was able to monitor CD64 levels over time, correlating them with the patient's vital signs. Researchers found that the results from the rapid test correlated well with the results from the traditional tests and with the patients' vital signs.

"By measuring the CD64 and the white cell counts, we were able to correlate the diagnosis and progress of the patient - whether they were improving or not," said Umer Hassan, a postdoctoral researcher at Illinois and the first author of the study. "We hope that this technology will be able to not only diagnose the patient but also provide a prognosis. We have more work to do on that."

Bashir's team is working to incorporate measurements for other inflammation markers into the rapid-testing device to give a more complete picture of the body's response, and to enable earlier detection. They also have a startup company, Prenosis Inc., that is working to commercialize the device.

"We want to move the diagnosis point backward in time," Bashir said. "The big challenge in sepsis is that no one knows when you get infected. Usually you go to the hospital when you already feel sick. So the goal is that someday you can be testing this at home, to detect infection even earlier if you can."

###

The Center for Integration of Medicine and Innovative Technology Innovation in Boston supported this work through a Point-of-Care Technology Research Center in Primary Care grant. Additional support came from Carle Foundation Hospital and the University of Illinois.

Editor's notes: To reach Rashid Bashir, call 217-333-1867; email rbashir@illinois.edu.

The paper "A Point-of-Care Microfluidic Biochip for Quantification of CD64 Expression from Whole Blood for Sepsis Stratification" is available from the U. of I. News Bureau. DOI: 10.1038/NCOMMS15949

Media Contact

Liz Ahlberg Touchstone
eahlberg@illinois.edu
217-244-1073

 @NewsAtIllinois

http://www.illinois.edu 

Liz Ahlberg Touchstone | EurekAlert!

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>