Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PTB unites magnetic resonance and radar technology in one prototype

10.09.2008
New process is to improve diagnostic images

Don't move a muscle! Patients certainly have to take this request to heart if they have to lie in a magnetic resonance tomography (MRT) device – otherwise movement artefacts result on the images produced by the MRT.

These are distorting elements in the image which show the movement of the body, but not the body itself. Movement is a disturbing factor which leads to blurring and "ghosting" in the MRT image. Patients, however, have to have not only a lot of patience but also endurance, as a magnetic resonance imaging (MRI) test can take up to 30 minutes. But even if the patient does not move once during the whole time, movement artefacts cannot be ruled out.

Some parts of the body are always moving – for example the lungs expand when you breathe in and the chest goes up and down. The movement of the heart muscle also leads to distortions in the image – as it changes shape during the pumping cycle. With the aid of an ultra-broadband radar device, these vital movements during measurement can be taken into consideration and the MRI measurements can be corrected.

The joint use of both technologies is being tested with the aid of a prototype developed at the Physikalisch Technische Bundesanstalt (PTB, Germany's national metrology institute), which arose in co-operation with Ilmenau University of Technology. This project is funded by the Deutsche Forschungsgemeinschaft (DFG, the German Research Foundation) in the frame of a priority programme running for six years.

The interdisciplinary research project ultraMEDIS within the DFG priority programme 1202 "Ultra wide-band radio technologies for communication, localisation and sensor technology" is aimed at using ultra-wideband (UWB) radar techniques for the detection of tumours, as well as for navigation technology in magnetic resonance (MR) imaging.

Ultra-wideband electromagnetic pulses (spectral bandwidth up to 10 GHz) generated by an UWB radar and transmitted by an antenna are able to probe the human body with low integral power (~ 1 mW), because electromagnetic waves can propagate through the body and are reflected at interfaces between materials with different dielectric properties. The receiving antenna detects the reflected signals coming from different depths of the body.

The high temporal and spatial resolution of radar sensors, their compatibility to existing narrow-band systems, the low integral power of the probing signals and their ability to penetrate objects are thereby exploited. Especially the latter one is the very property which makes UWB radar so attractive for medical applications.

At PTB, a demonstrator for the evaluation of the principal feasibility of an MR-UWB combination has been realised [1, 2]. With an MR-compatible UWB radar, the characteristic landmarks of the heart muscle during breathing could be followed without disturbing the actual MR measurement. Thus both, a real-time adjustment of the MR frequency according to the current position of the heart or a retrospective position correction of the MR data could be carried out.

The Project is carried out in cooperation with the Technical University of Ilmenau and with medical partners from University of Jena, whose special attention lies on tumor detection.

Imke Frischmuth | alfa
Further information:
http://www.ptb.de/
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2008/pitext/pi080909.html

More articles from Medical Engineering:

nachricht New quantum material could warn of neurological disease
11.04.2019 | Purdue University

nachricht High-strength MRI tracks MS progression
09.04.2019 | Radiological Society of North America

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>