Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Precise navigation through the vascular system

02.07.2019

Fraunhofer MEVIS is developing intelligent catheters

Endovascular interventions are an integral part of the medical routine with 6 million procedures done worldwide annually. During the procedure, doctors insert a thin, flexible wire to navigate the catheter into the blood vessels to apply stents or remove blood clots. In order to navigate the catheter precisely through the vessels, patients undergo X-rays during the procedure.


Inserting the intelligent catheter into the vascular system, the physician can observe the position in the virtual 3D model of the patient, now, as Torben Pätz and Jan Strehlow demonstrate here.

© Fraunhofer MEVIS

One downside is that “patients and doctors are exposed to a considerable amount of radiation,” says Dr. Torben Pätz, mathematician at the Fraunhofer Institute for Digital Medicine MEVIS in Bremen.

“In addition, the X-rays merely show a 2D projection instead of a 3D image, which can sometimes impede precise localization of the catheter.” Fraunhofer MEVIS is developing a system called IntelliCath (Intelligent Catheter Navigation) to remedy these problems.

The new method uses a catheter equipped with a special optical fiber containing tiny ‘mirrors’. When light passes through the fiber, the mirrors reflect a portion of the light. Whenever the fiber bends, the reflected light changes color. This is a key feature of the method, because sensors can then measure the change in color. “The signal from the sensors gives us information about the intensity and direction of the curvature,” explains Pätz. “To some extent, the fiber knows how it is formed.”

An additional element is needed, however, for precise navigation through the vascular system. Prior to the procedure, physicians obtain CT or MR images of a patient. Based on this image data, software creates a 3D model of the vessel system and displays it on a monitor. During the endovascular procedure, live data from the fiber navigation is fed into the model. As a result, the doctor views the monitor to see how the device moves through the vascular labyrinth live and in 3D.

MEVIS experts have already been able to test the method’s feasibility using a prototype. “We connected several silicone hoses into a curved labyrinth,” says Pätz. “Then, we inserted our device containing an optical fiber into the labyrinth.” On the monitor, they were able to locate the catheter’s position in real-time with precision approaching five millimeters. The researchers have already applied for two patents.

Although several medical device companies also work on similar projects, “they expend a great deal of technical effort into trying to reconstruct the shape of the entire catheter, which can be up to two meters long,” says Pätz. “Our algorithm, however, only needs a fraction of the data to localize the catheter in a known vascular system.” As a result, the MEVIS approach promises cost-effective technology without special fibers and measurement systems and is less sensitive to measurement errors than previous approaches.

Next, the experts will test the IntelliCath system on both a full-body phantom of the human vascular system and a pig lung. Towards the end of the current project phase in 2020, a prototype will be ready to serve as a foundation for a clinical trial.

In addition, Pätz and his team are developing acoustic feedback to relieve doctors of the constant need to view at the monitor. The idea is to employ various indication sounds to signal how far the next vessel junction is and in which direction the catheter should be inserted. “It is similar to a car’s parking assistance system,” explains Pätz, “where you also receive acoustic indications about the distance to the next obstacle.”

IntelliCath is a part of the more comprehensive SAFE project (Software support and assistance systems for minimally invasive neurovascular procedures). Its goal is to support physicians by facilitating X-ray navigation during catheter procedures. For example, software can display supplementary information extracted from CT or MR images into the live X-ray image.

Furthermore, AI will be able to automatically detect the position of the catheter. The project partners at the project group for Automation in Medicine and Biotechnology at the Fraunhofer Institute for Manufacturing Engineering and Automation IPA are developing an intelligent assistance system to support catheter procedures from support for manual navigation of the catheter to completely automatic navigation. SAFE is a Fraunhofer project with funding of 2.4 million euros. It commenced in April 2017 and will end in September 2020.

Weitere Informationen:

https://www.mevis.fraunhofer.de/en/press-and-scicom/press-release/2019/precise-n...

Bianka Hofmann | Fraunhofer-Institut für Digitale Medizin MEVIS

Further reports about: 3D Automation Fraunhofer-Institut X-ray catheter fiber optical fiber vascular vascular system

More articles from Medical Engineering:

nachricht Smartphones as ophthalmoscopes save sight: Cost-effective telemedical eye screening of people with diabetes in India
09.07.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Shorter courses of proton therapy can be just as effective as full courses prostate cancer
08.07.2019 | University of Pennsylvania School of Medicine

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

Better thermal conductivity by adjusting the arrangement of atoms

19.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>