Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potentially life-saving health monitor technology designed by Sussex University physicists

10.01.2018

Wearable monitor to detect heart and breathing abnormalities in babies

Sick babies in remote parts of the world could be monitored from afar thanks to new wearable technology designed by physicists at the University of Sussex. And parents at home, concerned about the risk of cot death, could keep track of their new babies' heart and breathing rates with automatic updates to their smart phones, using 'fitness tracker'-style technology built into baby sleep suits.


This is a sensing element of a prototype of the monitor device (flexible pipe filled with graphene emulsion) -- developed by University of Sussex physicists.

Credit: University of Sussex

The unobtrusive sensors - the most sensitive liquid-based devices to have ever been developed - could also be transformative for anyone with life-threatening conditions such as sleep apnea. In addition, because graphene is cheap to produce, the new breakthrough should be affordable.

Professor Alan Dalton, from the School of Mathematics and Physical Sciences, and his team of physicists at the University of Sussex have created a liquid made from an emulsion of graphene, water and oil, which conducts electricity. The breakthrough is described in a paper published today, Tuesday 9 January 2018, in the peer-reviewed Royal Society of Chemistry journal Nanoscale. A prototype has been created and the team are talking to commercial sponsors to fund further research so that the product can be brought to market.

The team were inspired to create this new health monitor after the Bill and Melinda Gates Foundation called for new affordable wearable health technologies for babies in situations where resources are scarce.

Graphene is a two-dimensional material made from carbon atoms that is strong, flexible and conductive. When a channel or tube holding the liquid is stretched, even by a small amount, the conductivity of the liquid changes. This means that the respiration rates and pulses of people wearing the device can be tracked.

Because the new liquid technology is so sensitive, it picks up very small signals when attached to the body. In order to monitor the pulses of babies at the moment, clunky sensors need to be attached to babies' tiny feet or hands, which often fall off. The information is then relayed to a monitor by wires which can restrict the child's movement.

Professor Dalton's technological development would see the monitoring done wirelessly and non-invasively with a 'fitness tracker'-like band - or even embedded within the fabric of a sensor vest for the baby to wear.

Professor Dalton says:

"Using the conducting liquid emulsions we have developed, we will produce cheap, wearable sensors based on graphene. The devices will be comfortable, non-invasive and can provide intuitive diagnostics of breathing and heart rate. We will eventually have a suit that the baby can wear which will read-out all vital information wirelessly. We hope to see this made available within two to four years.

"In the laboratory we have created a sensor that has the potential to drastically improve early detection of life-threatening symptoms such as sleep apnea or cardiac arrhythmia, where constant monitoring with conventional equipment is challenging outside of the hospital environment."

"Of course the ultimate potential is wider than that. Anyone interested in tracking their heart or respiration rates - joggers for example - may be interested to wear this technology within their exercise gear. I came up with the idea for the new graphene emulsion at the core of this technology while making salad dressing - which is a type of emulsion - at home with my daughter. It's amazing how, as scientists, we take inspiration from the everyday world around us."

Dr Matthew Large, lead researcher on the project in the School of Mathematics and Physical Sciences, describes the new development:

"What we've done is similar to how you might make a salad dressing; by shaking together water and oil, you make tiny droplets of one liquid floating in the other because the two don't mix. Normally, the droplets would all collect together and the liquids separate over time, like the droplets in a lava lamp. We've resolved this by putting graphene in. The graphene, which is an atom thick, sits at the surface of the droplets and stops them from coalescing."

Dr Large continues:

"What's quite exciting about this new type of conductive liquid is how sensitive it is to being stretched. When the graphene particles are assembled around the liquid droplets electrons can hop from one particle to the next; this is why the whole liquid is conductive. When we stretch our sensors we squeeze and deform the droplets; this moves the graphene particles further apart and makes it much harder for the electrons to hop across the system. The sensitivity of this new kind of strain sensor is actually much higher than a lot of existing technologies, and it is the most sensitive liquid-based device ever reported by quite a significant margin."

Professor Dalton says:

"Graphene is very affordable as it can be produced using naturally-occurring graphite, so this could be rolled out on a big scale. This is good news for health services because the new technology will not be expensive to make and buy. It also means it should be affordable to individuals."

###

The paper 'Functional liquid structures by emulsification of graphene and other two-dimensional nanomaterials' is published in Nanoscale on Tuesday 9 January 2018. It is authored by Matthew Large, Sean Ogilvie, Manuela Meloni, Aline Amorim Graf, and Giuseppe Fratta at the University of Sussex; Jonathan Salvage at the University of Brighton; Alice King and Alan B. Dalton, also at Sussex. The paper is here from 10am Tuesday 9 January: http://dx.doi.org/10.1039/c7nr05568d. The team is collaborating with commercial partner Advanced Materials Development.

Media Contact

Alice Ingall
press@sussex.ac.uk
01-273-678-111

 @sussexunipress

http://www.sussex.ac.uk 

Alice Ingall | EurekAlert!

Further reports about: droplets graphene life-threatening respiration salad dressing

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>