Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel technology may enable more efficient atrial fibrillation monitoring and detection

22.08.2018

A mobile heart monitor with an automated algorithm paired with a smart device and app, coupled with physician overread, can detect atrial fibrillation with excellent sensitivity and specificity, report scientists in HeartRhythm

Despite increasing awareness about atrial fibrillation (AF), stroke continues to be the first manifestation of AF in some patients. Therefore, early detection and regular heart monitoring are important for such patients. Current monitoring technology devices can be cumbersome, some are limited in duration and others are invasive, and many usually require a trip to the doctor's office. With the rise of smart phone-enabled medical peripherals, a new area of focus is ambulatory detection of AF. A study published in HeartRhythm found that a mobile heart monitor, paired with a smart device and an app, and supported by an automated algorithm can effectively and accurately detect AF, especially when supported by physician overread.


The KMCM mobile monitoring device records a rhythm strip using a smartphone app.

Credit: AliveCor


A look at the KMCM smartphone app that allows patients to securely send their rhythm strips to their physician.

Credit: AliveCor

The Kardia Mobile Cardiac Monitor (KMCM) is a small two-electrode cardiac rhythm recorder that hooks up to a smart device. It enables patients to record a 30-second rhythm strip. In this study, scientists ran the data collected by the devices through KMCM's new automated rhythm analysis, which uses an algorithm specifically developed to detect AF.

Investigators designed the study to directly compare the results obtained from the mobile monitoring to that of a traditional 12-lead ECG recording analyzed by a doctor. AF patients underwent almost simultaneous recording by both the mobile monitoring device and a traditional ECG. When the results were compared, they found that when the conditions were met for the automated rhythm analysis to provide a diagnosis, it had 96.6 percent sensitivity and 94.1 percent specificity for AF detection compared to physician-interpreted ECGs.

"This study is the first independent validation of this smartphone monitor system in the clinical setting using near simultaneous 12-lead ECGs," said lead investigator Khaldoun G. Tarakji, MD, MPH, Section of Cardiac Pacing and Electrophysiology, Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH, USA. "In addition to providing an instantaneous rhythm interpretation, this smartphone monitor system is able to transmit a recording to a secure server where the recordings can be directly reviewed."

The false negative detection rate was low (3.4 percent); however, the automated system failed to classify some of the results as either "Normal" or "Possible AF." When these results were analyzed by investigators, they found that the majority of these "unclassified" readings fell outside the predefined bounds for the algorithm (e.g., the recordings were less than 30 seconds in duration, the heart rate recorded was under 50 beats per minute [bpm] or over 100 bpm, or that there was too much noise during the rhythm capture).

"Given the predefined algorithm operating parameters and high rate of "unclassified" recordings with resultant missed AF instances, this smartphone monitor's algorithm is not suited to be a replacement for physician analysis," noted Dr. Tarakji. "However, given its highly accurate performance when able to provide an interpretation, it holds potential as an adjunct to clinical decision making. Patients can use an automated AF detection as a basis for pursuing additional medical follow-up, and clinicians may use it to develop treatment plans supported by more objective data rather than relying only on symptoms."

Study participants found the KMCM device and app easy to use. Having access to a mobile monitoring device also helped ease anxiety related to their AF diagnosis. Investigators hope that in the future, these types of smart device apps and devices will help doctors and patients form more of a care partnership, in which they can work together as a team to monitor chronic conditions like AF.

"The ability to record your own rhythm strip and directly visualize it and share it with your physician was fictional up until a few years ago. We live in an exciting era in which technology is evolving at an unprecedented pace. As a medical community, we have a duty to test these products, assess their accuracy, and more importantly, examine their ability to change outcomes. Abundance of data could become noise if it does not come with guidance about proper management of the information. Our obligation through proper clinical studies is to provide guidance about the best use of these tools. As physicians, we should not view these products as threats, but rather as an opportunity to provide better and more effective care for our patients," concluded Dr. Tarakji.

Media Contact

Jane Grochowski
hmsmedia@elsevier.com
406-542-8397

 @elseviernews

http://www.elsevier.com 

Jane Grochowski | EurekAlert!
Further information:
http://dx.doi.org/10.1016/j.hrthm.2018.06.037

More articles from Medical Engineering:

nachricht First COVID-19 Patient in Germany successfully treated with novel Diaphragm Therapy
10.07.2020 | Universität Greifswald

nachricht Restoring Vision Through Electrical Stimulation
09.07.2020 | Universität Zürich

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>