Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel PET tracer identifies most bacterial infections

06.10.2017

The new imaging agent offers a non-invasive method of detecting infection and monitoring antibiotic therapy

Stanford University medical scientists have developed a novel imaging agent that could be used to identify most bacterial infections. The study is the featured basic science article in The Journal of Nuclear Medicine's October issue.


This figure shows A) bioluminescence images of CD1 mice bearing P. aeruginosa-infected wound (left panel) and control mice (right panel), and B) sagittal slices from micro PET/CT scan of the same mice 1 hour after intravenous administration of 6"-18F-fluoromaltotriose.

Courtesy of Sam Gambhir, MD, PhD, Stanford University

Bacteria are good at mutating to become resistant to antibiotics. As one way to combat the problem of antimicrobial resistance, the Centers for Disease Control and Prevention (CDC) has called for the development of novel diagnostics to detect and help manage the treatment of infectious diseases.

"We really lack tools in the clinic to be able to visualize bacterial infections," explains Sanjiv Sam Gambhir, MD, PhD, chair of the Radiology Department and director of Precision Health and Integrated Diagnostics at Stanford University in California.

"What we need is something that bacteria eat that your cells, so-called mammalian cells, do not. As it turns out, there is such an agent, and that agent is maltose, which is taken up only by bacteria because they have a transporter, called a maltodextrine transporter, on their cell wall that is able to take up maltose and small derivatives of maltose."

The traditional way of diagnosing bacterial infection involves biopsy of the infected tissue and/or blood and culture tests. Gambhir and colleagues developed a new positron emission tomography (PET) tracer, 6"-18F-fluoromaltotriose, that offers a non-invasive means of detection.

The agent is a derivative of maltose and is labeled with radioactive fluorine-18 (18F). For this study, the tracer was evaluated in several clinically relevant bacterial strains in cultures and in mouse models using a micro-PET/CT scanner. Its use to help monitor antibiotic therapies was also evaluated in rats.

The results show that 6"-18F-fluoromaltotriose was taken up in both gram-positive and gram-negative bacterial strains, and it was able to detect Pseudomonas aeruginosa in a clinically relevant mouse model of wound infection.

Gambhir points out, "This is the first time this particular maltotriose, labeled with fluorine-18, has been synthesized and used in animal models. It's able to pick up bacteria that may be present anywhere throughout your body, and it does not lead to an imaging signal from a site of infection that does not involve bacteria."

He notes that the new agent even identified an infection in the heart of an animal. "We could pick up very small bacterial foci in a heart valve. And then when those animals were treated with an antibiotic, we could see that the signal went away in the heart. So, the properties of the tracer of sensitivity, specificity, low background signal throughout the animal are now facilitating its translation into humans."

The results of this pre-clinical study demonstrate that 6"-18F-fluoromaltotriose is a promising new tracer for diagnosing most bacterial infections and has the potential to change the clinical management of patients suffering from infectious diseases of bacterial origin.

Looking ahead, Gambhir says, "The hope is that in the future when someone has a potential infection, this approach of injecting the patient with fluoromaltotriose and imaging them in a PET scanner will allow localization of the signal and, therefore, the bacteria. And then, as one treats them, one can verify that the treatment is actually working - so that if it's not working, one can quickly change to a different treatment (for example, a different antibiotic). These kinds of findings are very important for patients, because they will very likely lead to entirely new ways to manage patients with bacterial infections, no matter where those infections might be hiding in the body."

###

The authors of "Specific Imaging of Bacterial Infection using 6"-18F-Fluoromaltotriose: A Second-Generation PET Tracer Targeting the Maltodextrin Transporter in Bacteria" include Gayatri Gowrishankar, Jonathan Hardy, Mirwais Wardak, Mohammad Namavari, Robert E. Reeves, Evgenios Neofytou, Ananth Srinivasan, Joseph C. Wu, Christopher H. Contag, and Sanjiv Sam Gambhir, Stanford University School of Medicine, Stanford, California.

Please visit the SNMMI Media Center to view the PDF of the study, including images, and more information about molecular imaging and personalized medicine. To schedule an interview with the researchers, please contact Laurie Callahan at 703-652-6773 or lcallahan@snmmi.org. Current and past issues of The Journal of Nuclear Medicine can be found online at http://jnm.snmjournals.org.

About the Society of Nuclear Medicine and Molecular Imaging

The Society of Nuclear Medicine and Molecular Imaging (SNMMI) is an international scientific and medical organization dedicated to raising public awareness about nuclear medicine and molecular imaging, a vital element of today's medical practice that adds an additional dimension to diagnosis, changing the way common and devastating diseases are understood and treated and helping provide patients with the best health care possible.

SNMMI's more than 15,000 members set the standard for molecular imaging and nuclear medicine practice by creating guidelines, sharing information through journals and meetings and leading advocacy on key issues that affect molecular imaging and therapy research and practice. For more information, visit http://www.snmmi.org.

Media Contact

Laurie Callahan
lcallahan@snmmi.org

 @SNM_MI

http://www.snm.org 

Laurie Callahan | EurekAlert!

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>