Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Noninvasive imaging technique may help kids with heart transplants

13.07.2012
Cardiologists at Washington University School of Medicine in St. Louis have developed a noninvasive imaging technique that may help determine whether children who have had heart transplants are showing early signs of rejection. The technique could reduce the need for these patients to undergo invasive imaging tests every one to two years.

The new method is described online in the Journal of Heart and Lung Transplantation.

The invasive imaging test, a coronary angiogram, involves inserting a catheter into a blood vessel and injecting a dye to look for dangerous plaque on the walls of arteries feeding blood to the heart. This plaque build-up indicates coronary artery disease and is a sign that the body may be rejecting the new heart. Since pediatric heart transplant patients are at high risk of developing coronary artery disease, doctors monitor their arteries on a regular basis. But recurring angiograms become problematic.

“Many of these children have undergone so many operations, we have lost access to their big blood vessels,” says Charles E. Canter, MD, professor of pediatrics. “Sometimes it’s impossible to do catheterization procedures on them.”

Based on experience imaging other types of inflammation in arteries, senior author Samuel A. Wickline, MD, professor of medicine, and his colleagues, including Canter and medical student Mohammad H. Madani, a Doris Duke Clinical Research Fellow, examined whether they could assess coronary artery disease in these children using magnetic resonance imaging (MRI). In this case, the MRI was enhanced with a commonly used contrast agent called gadolinium that is injected into the arteries. Gadolinium is not radioactive and makes areas of inflamed arteries and heart muscle show up brighter on an MRI.

“The brighter it is, the more it is associated with coronary artery disease,” Canter says.

The study included 29 heart transplant patients and eight healthy children who served as controls. The transplant patients underwent standard coronary angiograms as part of their normal care. They also had MRIs of the coronary arteries to examine whether the noninvasive method correlated with the degree of coronary artery disease found in the angiograms. The eight children who served as controls only had MRI scans. The researchers assessing the MRI results were blinded to the results of the transplants patients’ angiograms.

While all of the transplant patients’ angiograms showed evidence of plaque build-up, in only six of them was it severe enough for a diagnosis of coronary artery disease.

These six patients had the brightest coronary arteries on the MRI scans, compared to both the transplant patients without coronary disease and the healthy controls. Still, the 23 transplant patients without diagnosed coronary disease had significantly brighter arteries than the healthy participants. Such evidence demonstrates the need to continue monitoring these patients.

Although the brightness of the arteries on MRI correlated well with a diagnosis of coronary artery disease, gadolinium can be toxic to the kidney, Canter points out. This means the technique can’t be used for patients with poor kidney function. Furthermore, clear images with MRI are difficult in very young children because of their high heart rates. In this study, no participant was younger than age 10. Nevertheless, Canter sees a possible future place for this technique in helping to monitor the progress of coronary artery disease in transplant patients.

“The results of this pilot study were very promising,” Canter says. “But we need to look at more patients. We’re in the process of developing a bigger study to confirm and refine the results. I think eventually this could be used as a screening technique, not so much to eliminate, but to reduce the number of angiograms.”

Madani MH, Canter CE, Balzer DT, Watkins MP, Wickline SA. Noninvasive detection of transplant coronary artery disease with contrast-enhanced cardiac MRI in pediatric cardiac transplants. Journal of Heart and Lung Transplantation. Online July 2, 2012.

This work was supported by the Children’s Discovery Institute, St. Louis Children’s Hospital, Washington University School of Medicine in St. Louis and a Doris Duke Clinical Research Fellowship.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Julia Evangelou Strait | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Medical Engineering:

nachricht Faster detection of atrial fibrillation thanks to smartwatch
18.03.2019 | Universität Greifswald

nachricht A peek into lymph nodes
15.03.2019 | Tohoku University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>