Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New pen-sized microscope could ID cancer cells in doctor's offices and operating rooms

26.01.2016

Surgeons removing a malignant brain tumor don't want to leave cancerous material behind. But they're also trying to protect healthy brain matter and minimize neurological harm.

Once they open up a patient's skull, there's no time to send tissue samples to a pathology lab -- where they are typically frozen, sliced, stained, mounted on slides and investigated under a bulky microscope -- to definitively distinguish between cancerous and normal brain cells.


The UW's miniature microscope uses "dual-axis confocal microscopy" to illuminate and more clearly see through opaque tissue. This video shows images of fluorescent blood vessels in a mouse ear at various depths ranging from 0.075 to 0.125 millimeters deep.

Credit: University of Washington

But a handheld, miniature microscope being developed by University of Washington mechanical engineers could allow surgeons to "see" at a cellular level in the operating room and determine where to stop cutting.

The new technology, developed in collaboration with Memorial Sloan Kettering Cancer Center, Stanford University and the Barrow Neurological Institute, is outlined in a paper published in January in the journal Biomedical Optics Express.

"Surgeons don't have a very good way of knowing when they're done cutting out a tumor," said senior author Jonathan Liu, UW assistant professor of mechanical engineering. "They're using their sense of sight, their sense of touch, pre-operative images of the brain -- and oftentimes it's pretty subjective."

"Being able to zoom and see at the cellular level during the surgery would really help them to accurately differentiate between tumor and normal tissues and improve patient outcomes," said Liu.

The handheld microscope, roughly the size of a pen, combines technologies in a novel way to deliver high-quality images at faster speeds than existing devices. Researchers expect to begin testing it as a cancer-screening tool in clinical settings next year.

For instance, dentists who find a suspicious-looking lesion in a patient's mouth often wind up cutting it out and sending it to a lab to be biopsied for oral cancer. Most come back benign.

That process subjects patients to an invasive procedure and overburdens pathology labs. A miniature microscope with high enough resolution to detect changes at a cellular level could be used in dental or dermatological clinics to better assess which lesions or moles are normal and which ones need to be biopsied.

"The microscope technologies that have been developed over the last couple of decades are expensive and still pretty large, about the size of a hair dryer or a small dental x-ray machine," said co-author Milind Rajadhyaksha, associate faculty member in the dermatology service at the Memorial Sloan Kettering Cancer Center in New York City. "So there's a need for creating much more miniaturized microscopes."

Making microscopes smaller, however, usually requires sacrificing some aspect of image quality or performance such as resolution, field of view, depth, imaging contrast or processing speed.

"We feel like this device does one of the best jobs ever -- compared to existing commercial devices and previous research devices -- of balancing all those tradeoffs," said Liu.

The miniature microscope uses an innovative approach called "dual-axis confocal microscopy" to illuminate and more clearly see through opaque tissue. It can capture details up to a half millimeter beneath the tissue surface, where some types of cancerous cells originate.

"Trying to see beneath the surface of tissue is like trying to drive in a thick fog with your high beams on - you really can't see much in front of you," Liu said. "But there are tricks we can play to see more deeply into the fog, like a fog light that illuminates from a different angle and reduces the glare."

The microscope also employs a technique called line scanning to speed up the image-collection process. It uses micro-electrical-mechanical -- also known as MEMS -- mirrors to direct an optical beam which scans the tissue, line by line, and quickly builds an image.

Imaging speed is particularly important for a handheld device, which has to contend with motion jitter from the human using it. If the imaging rate is too slow, the images will be blurry.

In the paper, the researchers demonstrate that the miniature microscope has sufficient resolution to see subcellular details. Images taken of mouse tissues compare well with those produced from a multi-day process at a clinical pathology lab -- the gold standard for identifying cancerous cells in tissues.

The researchers hope that after testing the microscope's performance as a cancer- screening tool, it can be introduced into surgeries or other clinical procedures within the next 2 to 4 years.

"For brain tumor surgery, there are often cells left behind that are invisible to the neurosurgeon. This device will really be the first to let you identify these cells during the operation and determine exactly how much further you can reduce this residual," said project collaborator Nader Sanai, professor of neurosurgery at the Barrow Neurological Institute in Phoenix. "That's not possible to do today."

###

The research was funded by the National Institutes of Health through its National Institute of Dental and Craniofacial Research and National Cancer Institute.

Co-authors include UW mechanical engineering doctoral students Chengbo Yin, Ye Chen, Linpeng "Peter" Wei, Steven Leigh and Michael Rosenberg; postdoctoral researchers Adam K. Glaser and Prasanth Pillai; Memorial Sloan Kettering Cancer Center's Sanjeewa Abeytunge, Gary Peterson and Christopher Glazowski; and Stanford University research scientist Michael Mandella.

For more information, contact Liu at jonliu@uw.edu.

Grant Numbers: NIH / NIDCR - R01DE023497 and NIH / NCI - R01CA175391.

Media Contact

Jennifer Langston
jlangst@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

Jennifer Langston | EurekAlert!

Further reports about: NIH cancer cells cancerous cells cellular level technologies

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>