Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New microscope technique reveals internal structure of live embryos

08.08.2017

University of Illinois researchers have developed a way to produce 3-D images of live embryos in cattle that could help determine embryo viability before in vitro fertilization in humans.

Infertility can be devastating for those who want children. Many seek treatment, and the cost of a single IVF cycle can be $20,000, making it desirable to succeed in as few attempts as possible. Advanced knowledge regarding the health of embryos could help physicians select those that are most likely to lead to successful pregnancies.


A GLIM image of a rendered cow embryo that was cut through the center to reveal internal structures.

Image courtesy Gabriel Popescu

The new method, published in the journal Nature Communications, brought together electrical and computer engineering professor Gabriel Popescu and animal sciences professor Matthew Wheeler in a collaborative project through the Beckman Institute for Advanced Science and Technology at the U. of I.

Called gradient light interference microscopy, the method solves a challenge that other methods have struggled with -- imaging thick, multicellular samples.

In many forms of traditional biomedical microscopy, light is shined through very thin slices of tissue to produce an image. Other methods use chemical or physical markers that allow the operator to find the specific object they are looking for within a thick sample, but those markers can be toxic to living tissue, Popescu said.

"When looking at thick samples with other methods, your image becomes washed out due to the light bouncing off of all surfaces in the sample," said graduate student Mikhail Kandel, the co-lead author of the study. "It is like looking into a cloud."

GLIM can probe deep into thick samples by controlling the path length over which light travels through the specimen. The technique allows the researchers to produce images from multiple depths that are then composited into a single 3-D image.

To demonstrate the new method, Popescu's group joined forces with Wheeler and his team to examine cow embryos.

"One of the holy grails of embryology is finding a way to determine which embryos are most viable," Wheeler said. "Having a noninvasive way to correlate to embryo viability is key; before GLIM, we were taking more of an educated guess."

Those educated guesses are made by examining factors like the color of fluids inside the embryonic cells and the timing of development, among others, but there is no universal marker for determining embryo health, Wheeler said.

"This method lets us see the whole picture, like a three-dimensional model of the entire embryo at one time," said Tan Nguyen, the other co-lead author of the study.

Choosing the healthiest embryo is not the end of the story, though. "The ultimate test will be to prove that we have picked a healthy embryo and that it has gone on to develop a live calf," said Marcello Rubessa, a postdoctoral researcher and co-author of the study.

"Illinois has been performing in vitro studies with cows since the 1950s," Wheeler said. "Having the resources made available through Gabriel's research and the other resources at Beckman Institute have worked out to be a perfect-storm scenario."

The team hopes to apply GLIM technology to human fertility research and treatment, as well as a range of different types of tissue research. Popescu plans to continue collaborating with other biomedical researchers and already has had success looking at thick samples of brain tissue in marine life for neuroscience studies.

###

The National Science Foundation, the U. of I. Computational Science and Engineering fellowship and the U. of I. Yuen T. Lo Outstanding Research Award supported this research.

Editor's notes:

To reach Gabriel Popescu, call 217-333-4840; gpopescu@illinois.edu

To reach Matthew Wheeler, call 217-333-2239; mbwheele@illinois.edu

The paper "Gradient light interference microscopy for 3D imaging of unlabeled specimens" is available online and from the U. of I. News Bureau.

Media Contact

Lois E Yoksoulian
leyok@illinois.edu
217-244-2788

 @NewsAtIllinois

http://www.illinois.edu 

Lois E Yoksoulian | EurekAlert!

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>