Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method maps chemicals in the skin

29.11.2017

A new method of examining the skin can reduce the number of animal experiments while providing new opportunities to develop pharmaceuticals and cosmetics. Chemical imaging allows all layers of the skin to be seen and the presence of virtually any substance in any part of the skin to be measured with a very high degree of precision.

More and more chemicals are being released into our environment. For example, parabens and phthalates are under discussion as two types of chemicals that can affect us. But so far it has not been possible to find out how they are absorbed by the skin. A new study from Chalmers University of Technology and the University of Gothenburg shows how what is termed chemical imaging can provide comprehensive information about the human skin with a very high level of precision.


This is a 3-D imaging of a skin section in which the nickel content is being measured. The red area represents the presence of nickel.

Credit: Per Malmberg

Investigations into how substances pass into and through the skin have so far taken place in two ways: by using tape strips to pull off the top "corneal" layer of skin for analysis, and through urine and blood testing to see what has penetrated through the skin. But we still know very little about what happens in the layers of skin in between. Chemical imaging now allows us to see all layers of the skin with very high precision and to measure the presence of virtually any substances in any part of the skin. This can lead to pharmaceutical products that are better suited to the skin, for example.

The new method was created when the chemists Per Malmberg, at Chalmers University of Technology, and Lina Hagvall, at the University of Gothenburg, brought their areas of research together.

"With pharmaceuticals you often want as much as possible of the dose to be absorbed by the skin, but in some cases you may not want skin absorption, such as when you apply a sunscreen, which needs to remain on the surface of the skin and not penetrate it. Our method allows you to design pharmaceuticals according to the way you want the substance to be absorbed by the skin," says Hagvall.

Chemical imaging has until now mainly been used for earth sciences and cellular imaging, but with access to human skin from operations the researchers have come up with this new area for the technology. The researchers now also see opportunities opening up for replacing pharmaceutical tests which currently involve animal experiments. Their methods provide more accurate results than tests on mice and pigs. Since it is not permissible to use animals to test cosmetics, this method may also create new opportunities for the cosmetics industry.

"Many animal experiments carried out by researchers and companies are no longer necessary as a result of this method. If you want to know something about passive absorption into the human skin, this method is at least as good. It's better to do your testing on human skin than on a pig," says Hagvall.

The new method can also provide a basis for determining the correct limits for harmful levels of substances that may come into contact with the skin. In order to establish those limits, you need to know how much of the dose on the skin's surface penetrates into and through the skin, which this method can show. It enhances our knowledge about what we are absorbing in our workplaces and in childcare facilities.

"Our method can show everything with an image, whether you are looking for nickel, phthalates or parabens in the skin, or if you want to follow the drug's path through the skin. With just a skin sample we can essentially search for any molecules. We don't need to adapt the method in advance to what we are looking for," says Malmberg.

It will be possible to apply the results in the very near future. The technology itself is ready for use today. There is still a small amount of work left to do in optimising the tests to achieve the best results, but the researchers believe that the method will be ready for use within a year.

Facts: Chemical imaging

Chemical imaging involves the use of a laser or ion beam to analyse the sections of skin using a mass spectrometer. Every dot, or pixel, of the section which the beam strikes provides information, which is used to classify the chemicals present in the skin according to molecular weight. The chemical information from each dot can then be combined into a digital image which shows the distribution of a substance in the skin. A time-of-flight secondary ion mass spectrometer (ToF-SIMS), which provides a very high spatial resolution down to the nanometre range, was used in this particular study.

Media Contact

Johanna Wilde
johanna.wilde@chalmers.se
46-317-722-029

 @chalmersuniv

http://www.chalmers.se/en/ 

Johanna Wilde | EurekAlert!

More articles from Medical Engineering:

nachricht Medica 2018: New software for a more efficient planning of minimally invasive surgery
06.11.2018 | Technische Universität Kaiserslautern

nachricht SwRI improves structural health monitoring with magnetostrictive transducer
30.10.2018 | Southwest Research Institute

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>