Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New investigation of endovenous laser ablation of varicose veins

11.05.2016

A significant number of publications are devoted to results of investigations aimed at the development of methods of laser ablation for varicose veins. This is due to the fact that this method is an effective and minimally invasive technique for the treatment of varicose.

However, this kind of therapy is associated with significant collateral damage because of the high output power of the laser. Therefore, it is an important question in vein surgery to optimize the laser characteristics for ablation.


Experimental device for simulation of endovenous laser ablation.

Credit: from the article

To realize a process of endovenous laser ablation (EVLA), it is necessary to expose the laser radiation upon a region of the vessel so that it receives sufficient energy to cause thermal damage.

On one hand, the value of this energy should provide coagulation of vein, and on the other, it should be optimized so that the structure of the surrounding healthy tissues has received a minimum degree of damage.

This original study conducted by researchers from Ogarev Mordovia State University and Kazan Federal University presents the results of experiments on endovenous laser ablation of varicose veins in vitro using laser radiation of a solid-state laser and identifying the role a carbonized layer of blood in these experiments.

An experimental series with saline solution and red blood cell (RBC) suspension in the venous lumen was performed to identify the impact of a heated carbonized layer precipitated on the fiber end face versus the efficiency of EVLA. Results of these experiments confirmed that the presence of a heated carbonized layer on the fiber end face increases the efficiency of EVLA.

Further experiments are planned for process optimization. For instance, it is planned to use radial emitting fibers since this technique can minimize a possibility of vein perforations. Also, modification of the experimental device without placement of vein into a glass tube will allow to approach experimental conditions to real.

###

Contract grant sponsors the Ministry of Education and Science of the Russian Federation (the project part of the State Assignment in the sphere of scientific activities no 3.384.2014/? and State Assignment no. 0708 0210059 611); the subsidy of the Russian Government (agreement no. 02.A03.21.0002) to support the Program of Competitive Growth of Kazan Federal University among World's Leading Academic Centers.

Media Contact

Evgeniya Litvinova
press@kpfu.ru
7-843-233-7345

 @KazanUni

http://kpfu.ru/eng 

Evgeniya Litvinova | EurekAlert!

Further reports about: blood cell collateral damage laser radiation vein

More articles from Medical Engineering:

nachricht A 15-minute scan could help diagnose brain damage in newborns
15.11.2018 | Imperial College London

nachricht NIH scientists combine technologies to view the retina in unprecedented detail
14.11.2018 | NIH/National Eye Institute

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>