Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into the brain’s hidden depths: Jena scientists develop minimally-invasive endoscope

27.11.2018

This could be a major step towards a better understanding of the functions of deeply hidden brain compartments, such as the formation of memories, as well as related dysfunctions, including Alzheimer’s disease. Researchers from the Leibniz Institute of Photonic Technology (Leibniz-IPHT) in Jena and the University of Edinburgh have succeeded in using a hair-thin fibre endoscope to gain insights into hardly-accessible brain structures. For the first time, scientists are able to achieve high-resolution observations of neuronal structures inside deep brain areas of living mice. The study has been published in the journal “Light: Science & Applications”.

Using a hair-thin optical fibre, the researchers can look into deep brain areas of a living mouse as if through a keyhole. Recently introduced methods for holographic control of light propagation in complex media enable the use of a multimode fibre as an imaging tool.


Sergey Turtaev (on the left) and Ivo T. Leite from Leibniz-IPHT. The projection behind them shows an image of neurons obtained deep inside the brain via a single multimode fibre.

Sven Döring/ Agentur Focus

Based on this new approach, the scientists designed a compact system for fluorescence imaging at the tip of a fibre, the most minimally invasive endoscopic probe reported thus far.

It offers a much smaller footprint as well as enhanced resolution compared to conventional endoscopes based on fibre bundles or graded-index lenses.

“We are very excited to see our technology making its first steps towards practical applications in neuroscience,” says Dr Sergey Turtaev from Leibniz-IPHT, lead author of the paper.

“For the first time, we have shown that it is possible to examine deep brain regions of a living animal model in a minimally invasive way and to achieve high-resolution images at the same time,” adds IPHT scientist Dr Ivo T. Leite.

Sergey and Ivo work in the research group led by IPHT scientist Prof. Tomáš Čižmár, who developed the holographic method for imaging through a single fibre. Using this approach, the research team succeeded in obtaining images of brain cells and neuronal processes in the visual cortex and hippocampus of living mice with resolution approaching one micrometre (i.e. one thousand times smaller than a millimetre).

Detailed observations within these areas are crucial for research into sensory perception, memory formation, and severe neuronal diseases such as Alzheimer’s.

Current investigation methods are strongly invasive, such that it is not possible to observe neuronal networks in these inner regions at work without massive destruction of the surrounding tissue – usual endoscopes comprised of hundreds of optical fibres are too large to penetrate such sensitive brain regions, while the neuronal structures are too tiny to be visualised by non-invasive imaging methods such as magnetic resonance imaging (MRI).

“This minimally invasive approach will enable neuroscientists to investigate functions of neurons in deep structures of the brain of behaving animals: without perturbing the neuronal circuits in action, it will be possible to reveal the activity of these neuronal circuits while the animal is exploring an environment or learning a new task,” explains project partner Dr Nathalie Rochefort from the University of Edinburgh.

Building up on this work, the research team now wants to address the current challenges of neuroscience, which will entail the delivery of advanced microscopy techniques through single fibre endoscopes. “Under the “Photonics for Life” flag of the Leibniz-IPHT and in the scope of the European Research Council funded project LIFEGATE, we will strive hard to prepare more significant advancements on this result, essentially funnelling the most advanced methods of modern microscopy deep inside the tissues of living and functioning organisms.” concludes Prof. Tomáš Čižmár.

Wissenschaftliche Ansprechpartner:

Sergey Turtaev
sergey.turtaev(a)leibniz-ipht.de
+49 (0) 3641 · 206-225

Ivo Leite
ivo.leite(a)leibniz-ipht.de
+49 (0) 3641 · 206-225

Originalpublikation:

https://www.nature.com/articles/s41377-018-0094-x

Weitere Informationen:

https://www.leibniz-ipht.de/en/institute/presse/news/detail/den-neuronen-bei-der...

Lavinia Meier-Ewert | idw - Informationsdienst Wissenschaft

More articles from Medical Engineering:

nachricht Lighting array in the ear: First use of multi-channel cochlear implants with microscale light-emitting diodes
06.07.2020 | Universitätsmedizin Göttingen - Georg-August-Universität

nachricht Artificial intelligence identifies, locates seizures in real-time
30.06.2020 | Washington University in St. Louis

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Coupled hair cells in the inner ear – „Together we are strong!“

06.07.2020 | Health and Medicine

Innovations for sustainability in a post-pandemic future

06.07.2020 | Social Sciences

Carbon-loving materials designed to reduce industrial emissions

06.07.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>