Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuroscience and big data: How to find simplicity in the brain

25.08.2014

Scientists can now monitor and record the activity of hundreds of neurons concurrently in the brain, and ongoing technology developments promise to increase this number manyfold. However, simply recording the neural activity does not automatically lead to a clearer understanding of how the brain works.

In a new review paper published in Nature Neuroscience, Carnegie Mellon University's Byron M. Yu and Columbia University's John P. Cunningham describe the scientific motivations for studying the activity of many neurons together, along with a class of machine learning algorithms — dimensionality reduction — for interpreting the activity.

In recent years, dimensionality reduction has provided insight into how the brain distinguishes between different odors, makes decisions in the face of uncertainty and is able to think about moving a limb without actually moving.

Yu and Cunningham contend that using dimensionality reduction as a standard analytical method will make it easier to compare activity patterns in healthy and abnormal brains, ultimately leading to improved treatments and interventions for brain injuries and disorders.

"One of the central tenets of neuroscience is that large numbers of neurons work together to give rise to brain function. However, most standard analytical methods are appropriate for analyzing only one or two neurons at a time. To understand how large numbers of neurons interact, advanced statistical methods, such as dimensionality reduction, are needed to interpret these large-scale neural recordings," said Yu, an assistant professor of electrical and computer engineering and biomedical engineering at CMU and a faculty member in the Center for the Neural Basis of Cognition (CNBC).

The idea behind dimensionality reduction is to summarize the activity of a large number of neurons using a smaller number of latent (or hidden) variables. Dimensionality reduction methods are particularly useful to uncover inner workings of the brain, such as when we ruminate or solve a mental math problem, where all the action is going on inside the brain and not in the outside world. These latent variables can be used to trace out the path of ones thoughts.

"One of the major goals of science is to explain complex phenomena in simple terms. Traditionally, neuroscientists have sought to find simplicity with individual neurons. However, it is becoming increasingly recognized that neurons show varied features in their activity patterns that are difficult to explain by examining one neuron at a time. Dimensionality reduction provides us with a way to embrace single-neuron heterogeneity and seek simple explanations in terms of how neurons interact with each other," said Cunningham, assistant professor of statistics at Columbia.

Although dimensionality reduction is relatively new to neuroscience compared to existing analytical methods, it has already shown great promise. With Big Data getting ever bigger thanks to the continued development of neural recording technologies and the federal BRAIN Initiative, the use of dimensionality reduction and related methods will likely become increasingly essential.

###

The CNBC, a joint project between Carnegie Mellon and the University of Pittsburgh, is devoted to investigating the neural mechanisms that give rise to human cognitive abilities. The center will celebrate its 20th anniversary of advancing brain, computation and behavior through research and training this fall.

For more information, visit http://www.cnbc.cmu.edu/.

The Grossman Center for the Statistics of Mind, the Simons Foundation, the Gatsby Charitable Foundation and the National Institutes of Health's National Institute of Child Health and Human Development funded this research.

For more information, visit http://users.ece.cmu.edu/~byronyu/ and http://stat.columbia.edu/~cunningham/.

Shilo Rea | Eurek Alert!

Further reports about: Neuroscience activity analytical interact latent neurons patterns reduction

More articles from Medical Engineering:

nachricht Researchers use MRI to predict Alzheimer's disease
20.11.2018 | Radiological Society of North America

nachricht A 15-minute scan could help diagnose brain damage in newborns
15.11.2018 | Imperial College London

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>