Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Münster researchers make a fly’s heartbeat visible / Software automatically recognizes pulse

12.03.2018

Researchers at the University of Münster have developed a new method for visualizing the heartbeat of living fruit-fly pupae and automatically recording the pulse frequency. The researchers involved are from the Computer Science Department and the Institute for Neuro- and Behavioural Biology.

Looking into a tiny fly’s heart: researchers at the Cells-in-Motion Cluster of Excellence at the University of Münster have developed a new method for visualizing the heartbeat of living fruit-fly pupae and automatically recording the pulse frequency.


A fruit-fly pupa (the dorsal part of the pupae is facing the camera; the head is up). Right picture: Central organs are labelled

Photo: Dimitri Berh, Benjamin Risse

The system has a number of benefits: the images are produced with a camera, without any elaborate microscopy. The technique is non-invasive – in other words, it can all be done on a living creature without any dissection being necessary. The method makes it possible to observe several fly pupae, which are about three millimetres in length, simultaneously.

The equipment making it possible to take a look at a fly’s heart is the so-called FIM table. This was developed jointly by researchers from two teams – that led by Prof. Xiaoyi Jiang at Münster University’s Computer Science Department, and the one headed by Prof. Christian Klämbt at the Institute for Neuro- and Behavioural Biology.

The table with the Perspex plate actually has a special purpose: to automatically record and evaluate the movements of fly larvae. For biologists, this information on behaviour is important, for example in order to draw conclusions about the functions of genes.

Observing behaviour wasn’t all that was done, however. As fly larvae are translucent, the inner organs can be recognized on the FIM table, at least partially. This is the characteristic on which the current heartbeat study is based – as well as on a stroke of luck.

“At some point we had larvae on the table which turned over onto their backs. This enabled us to see that in this position the heart could be recognized using our FIM technology,” recalls computer scientist Dr. Benjamin Risse, now a professor and team leader at the Computer Science Department. He had already designed the observation table – which is now patented – while he was engaged on his doctoral dissertation.

The researchers systematically pursued their work on visualizing the heartbeat – using fly pupae, which are motionless and thus more suitable for studying the pulse. They developed algorithms which automatically recognize and quantify the pulsating movement of a fly’s heart in the video images. For observation purposes the researchers lay the animals belly-up on the FIM table when they are at an early stage of development, as so-called pre-pupae.

Background information:

The Drosophila melanogaster fruit-fly is an important object of research in biology. Although the fly’s heart is structured very differently than in mammals, there are fundamental aspects in their development and functions which are to similar to those in humans. This means that examining flies can help towards a better understanding of cardiovascular diseases in humans.

The fly’s development from an egg to a fully grown insect takes about ten days. Just one day after an egg has been laid, the larva hatches. In the next few days it grows and sheds its skin several times. After about five days the mobile larva becomes an immobile pupa. Within another four days the pupa undergoes a metamorphosis, and in the end the fully developed fly hatches from the pupa.

For the FIM table, the so-called frustrated total internal reflection (FTIR) of light is used. It is this which gives rise to the project name “FTIR-based imaging method”, or FIM. The method is based on light reflection within the Perspex plate and on the influence on the reflection on the part of the organisms being observed.

Original publication:

Berh D. et al.: Automatic non-invasive heartbeat quantification of Drosophila pupae. Computers in Biology and Medicine Volume 93, 1 February 2018, Pages 189-199; https://doi.org/10.1016/j.compbiomed.2017.12.017

Weitere Informationen:

https://video.uni-muenster.de/imperia/md/video/wwu/news/heart_beat.mp4 Video: Fruit-fly's heartbeat (Copyright: Dimitri Berh, Benjamin Risse)
http://fim.uni-muenster.de About FIM

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

More articles from Medical Engineering:

nachricht Synapses in 3D: Scientists develop new method to map brain structures
08.11.2019 | Leibniz-Institut für Photonische Technologien e. V.

nachricht The Screw That Dissolves
06.11.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

Im Focus: A Memory Effect at Single-Atom Level

An international research group has observed new quantum properties on an artificial giant atom and has now published its results in the high-ranking journal Nature Physics. The quantum system under investigation apparently has a memory - a new finding that could be used to build a quantum computer.

The research group, consisting of German, Swedish and Indian scientists, has investigated an artificial quantum system and found new properties.

Im Focus: Shedding new light on the charging of lithium-ion batteries

Exposing cathodes to light decreases charge time by a factor of two in lithium-ion batteries.

Researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory have reported a new mechanism to speed up the charging of lithium-ion...

Im Focus: Visible light and nanoparticle catalysts produce desirable bioactive molecules

Simple photochemical method takes advantage of quantum mechanics

Northwestern University chemists have used visible light and extremely tiny nanoparticles to quickly and simply make molecules that are of the same class as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

How the Zika virus can spread

11.11.2019 | Life Sciences

Researchers find new potential approach to type 2 diabetes treatment

11.11.2019 | Health and Medicine

Medica 2019: Arteriosclerosis - new technologies help to find proper catheters and location of vasoconstriction

11.11.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>