Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MoreGrasp: significant research results in the field of thought-controlled grasp neuroprosthetics

17.09.2018

Getting a better grip on things: The MoreGrasp Horizon2020 research project under the leadership of TU Graz is coming to an end with significant results in the field of thought-controlled grasp neuroprosthetics. A large-scale feasibility study is underway.

The beginning of the MoreGrasp project was marked by the idea of a groundbreaking further development of grasp neuroprosthetics activated by thought control. The aim was to develop a sensoric grasp neuroprosthesis to support the daily life activities of people living with severe to completely impaired hand function due to spinal cord injuries.


The Horizon2020 project MoreGrasp was headed by Gernot Müller-Putz, Head of the Institute of Neural Engineering at TU Graz

©Lunghammer - TU Graz


Research success for the MoreGrasp consortium: with the help of reprocessed brain signals the mental control of neuroprostheses will be considerably simplified in future

©MoreGrasp

The motor function of the neuroprosthesis was to be intuitively controlled by means of a brain-computer interface with emphasis on natural motor patterns. After the three-year project period came to an end, the breakthrough was reported by the members of the project consortium led by Gernot Müller-Putz, head of the Institute of Neural Engineering at TU Graz, which include the University of Heidelberg, the University of Glasgow, the two companies Medel Medizinische Elektronik and Bitbrain as well as the Know Center.

Paradigm shift: actually thought movement as signal

Gernot Müller-Putz explains brain-computer interfaces as follows: ‘In tetraplegia all the circuits in the brain and muscles in the body parts concerned are still intact, but the neurological connection between the brain and limb is interrupted. We bypass this by communicating via a computer which in turn passes on the command to the muscles.’

The muscles are controlled and encouraged to move by electrodes that are attached to the outside of the arm and can, for example, trigger the closing and opening of the fingers. Previously, the researchers worked with arbitrary mental concepts.

The important thing was the sufficient distinguishability of the produced brainwaves to control the neuroprosthesis. For instance, if the participant thought about raising and lowering their foot and the signal measured by the EEG opened the right hand, the subject then – for instance – would think of a movement of the left hand and the right hand would close again.

The MoreGrasp consortium developed this technique further – in particular the TU Graz research team – in the recently concluded project and created the paradigm shift. This mental ‘detour’ of any movement pattern so long as it is clearly distinguishable is no longer necessary, as Müller-Putz explains: ‘We now use so-called “attempted movement”.’ In doing so, the test subject attempts to carry out the movement – for instance, tries to grasp a glass of water.

Due to the tetraplegia, the occurring brain signal is not passed on but can be measured by means of an EEG and processed by the computer system. Müller-Putz is extremely pleased with the success of the research: ‘We are now working with signals which only differ from each other very slightly, and nevertheless we manage to control the neuroprosthesis successfully.

For users, this results in a completely new possibility of making movement sequences easier – especially during training. A variety of grips were investigated in the project: the palmar grasp (cylinder grasp, as for grasping a glass), the lateral grasp (key grasp, as for picking up a spoon), and opening the hand and turning it inwards and outwards.

Large-scale study

End users can register on the special online platform – for linking up persons who are interested or affected – to enter the large-scale feasibility study which is intended to check compatibility in everyday life of the technique developed in the study. Participants eligible for the study will be tested according to a complex procedure. Afterwards, each test person will be provided with a tailor-made BCI training course which must be completed independently in sessions lasting several hours each week. In this way brain signals will be gathered and the system itself will learn during each experiment.

Project information and online registration for the feasibility study
http://www.moregrasp.eu/

This research area is anchored in the Field of Expertise "Human & Biotechnology ", one of five strategic research FoE of TU Graz.

Wissenschaftliche Ansprechpartner:

Gernot MÜLLER-PUTZ
Univ.-Prof. Dipl.-Ing. Dr.techn.
TU Graz | Institute of Neural Engineering
Stremayrgasse 16/IV, 8010 Graz, Austria
Tel.: +43 316 873 30700
gernot.mueller@tugraz.at

Weitere Informationen:

http://www.moregrasp.eu/

Barbara Gigler | Technische Universität Graz

Further reports about: EEG body parts feasibility study movement muscles spinal cord injuries tetraplegia

More articles from Medical Engineering:

nachricht Faster detection of atrial fibrillation thanks to smartwatch
18.03.2019 | Universität Greifswald

nachricht A peek into lymph nodes
15.03.2019 | Tohoku University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>