Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MoreGrasp: significant research results in the field of thought-controlled grasp neuroprosthetics

17.09.2018

Getting a better grip on things: The MoreGrasp Horizon2020 research project under the leadership of TU Graz is coming to an end with significant results in the field of thought-controlled grasp neuroprosthetics. A large-scale feasibility study is underway.

The beginning of the MoreGrasp project was marked by the idea of a groundbreaking further development of grasp neuroprosthetics activated by thought control. The aim was to develop a sensoric grasp neuroprosthesis to support the daily life activities of people living with severe to completely impaired hand function due to spinal cord injuries.


The Horizon2020 project MoreGrasp was headed by Gernot Müller-Putz, Head of the Institute of Neural Engineering at TU Graz

©Lunghammer - TU Graz


Research success for the MoreGrasp consortium: with the help of reprocessed brain signals the mental control of neuroprostheses will be considerably simplified in future

©MoreGrasp

The motor function of the neuroprosthesis was to be intuitively controlled by means of a brain-computer interface with emphasis on natural motor patterns. After the three-year project period came to an end, the breakthrough was reported by the members of the project consortium led by Gernot Müller-Putz, head of the Institute of Neural Engineering at TU Graz, which include the University of Heidelberg, the University of Glasgow, the two companies Medel Medizinische Elektronik and Bitbrain as well as the Know Center.

Paradigm shift: actually thought movement as signal

Gernot Müller-Putz explains brain-computer interfaces as follows: ‘In tetraplegia all the circuits in the brain and muscles in the body parts concerned are still intact, but the neurological connection between the brain and limb is interrupted. We bypass this by communicating via a computer which in turn passes on the command to the muscles.’

The muscles are controlled and encouraged to move by electrodes that are attached to the outside of the arm and can, for example, trigger the closing and opening of the fingers. Previously, the researchers worked with arbitrary mental concepts.

The important thing was the sufficient distinguishability of the produced brainwaves to control the neuroprosthesis. For instance, if the participant thought about raising and lowering their foot and the signal measured by the EEG opened the right hand, the subject then – for instance – would think of a movement of the left hand and the right hand would close again.

The MoreGrasp consortium developed this technique further – in particular the TU Graz research team – in the recently concluded project and created the paradigm shift. This mental ‘detour’ of any movement pattern so long as it is clearly distinguishable is no longer necessary, as Müller-Putz explains: ‘We now use so-called “attempted movement”.’ In doing so, the test subject attempts to carry out the movement – for instance, tries to grasp a glass of water.

Due to the tetraplegia, the occurring brain signal is not passed on but can be measured by means of an EEG and processed by the computer system. Müller-Putz is extremely pleased with the success of the research: ‘We are now working with signals which only differ from each other very slightly, and nevertheless we manage to control the neuroprosthesis successfully.

For users, this results in a completely new possibility of making movement sequences easier – especially during training. A variety of grips were investigated in the project: the palmar grasp (cylinder grasp, as for grasping a glass), the lateral grasp (key grasp, as for picking up a spoon), and opening the hand and turning it inwards and outwards.

Large-scale study

End users can register on the special online platform – for linking up persons who are interested or affected – to enter the large-scale feasibility study which is intended to check compatibility in everyday life of the technique developed in the study. Participants eligible for the study will be tested according to a complex procedure. Afterwards, each test person will be provided with a tailor-made BCI training course which must be completed independently in sessions lasting several hours each week. In this way brain signals will be gathered and the system itself will learn during each experiment.

Project information and online registration for the feasibility study
http://www.moregrasp.eu/

This research area is anchored in the Field of Expertise "Human & Biotechnology ", one of five strategic research FoE of TU Graz.

Wissenschaftliche Ansprechpartner:

Gernot MÜLLER-PUTZ
Univ.-Prof. Dipl.-Ing. Dr.techn.
TU Graz | Institute of Neural Engineering
Stremayrgasse 16/IV, 8010 Graz, Austria
Tel.: +43 316 873 30700
gernot.mueller@tugraz.at

Weitere Informationen:

http://www.moregrasp.eu/

Barbara Gigler | Technische Universität Graz

Further reports about: EEG body parts feasibility study movement muscles spinal cord injuries tetraplegia

More articles from Medical Engineering:

nachricht LISA: Scientists introduce a new method of statistical inference in neuroimaging (fMRI)
16.10.2018 | Max-Planck-Institut für biologische Kybernetik

nachricht Researchers demonstrate first example of a bioelectronic medicine
09.10.2018 | Northwestern University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

RUDN chemist tested a new nanocatalyst for obtaining hydrogen

18.10.2018 | Life Sciences

Massive organism is crashing on our watch

18.10.2018 | Earth Sciences

Electrical enhancement: Engineers speed up electrons in semiconductors

18.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>