Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minimally invasive treatment of myomas

04.03.2011
Syngo Embolization Guidance application from Siemens makes tumor therapy easier on the patient

Siemens Healthcare has added new functions to Syngo Embolization Guidance to simplify and accelerate the minimally invasive embolization of benign tumors such as myomas. The new version of the imaging software assists with treatment planning and delivery and makes it possible to check treatment outcomes. Syngo Embolization Guidance can speed up interventions as compared with previous embolization procedures, meaning that both contrast medium and dose can be reduced. This makes the occlusion of the blood vessels supplying the myoma easier on the patient than conventional methods.

The new version of Syngo Embolization Guidance from Siemens enables physicians to mark both the myoma and the blood vessels supplying the tumor on the pre-intervention CT (computed tomography) or MRT (magnetic resonance tomography) images. The software calculates the tumor volume and the access path to the myoma for the catheter automatically and shows both in the 3D planning image. Superimposing this image on the live fluoroscopic image during the intervention enables the radiologist to position the catheter easier than has previously been the case and largely removes the need for contrast medium, as the path is already marked and segmented in the 3D image. Treating myomas with Syngo Embolization Guidance is thus easier on the patient. Myomas (uterine leiomyomas) are benign thickenings of the myometrium. The Robert Koch Institute explains in its reporting to the German Federal Health Monitoring System in 2007 that myomas occur in significant numbers in around one third of women from the age of 35 onward in our part of the world1.

The traditional technique for myoma treatment involves the surgical removal of the tumors in an operation. A new minimally invasive method involving the occlusion of blood vessels has become established over recent years. Known as embolization, this technique sees a catheter inserted into the patient's vascular system through a very small access point, usually in the groin, and guided to the tumor. The catheter is navigated through the blood stream using a fluoroscopy system. The position of the catheter in the patient's body is displayed on screen in 2D images from an angiography unit, with contrast medium helping to make the area of interest stand out from the surrounding tissue. Key to this technique is the ability to bring the catheter into a position from which the blood vessels supplying the tumor can be occluded. Once the catheter is in place, emboli, for example very small particles of plastic, are injected directly into the blood vessels that supply the myoma until the blood supply to the benign tumor has been stopped. Deprived of essential nutrients and oxygen, the myomas shrink and eventually die.

The product mentioned herein is not commercially available. Due to regulatory reasons its future availability cannot be guaranteed.

The Siemens Healthcare Sector is one of the world’s largest healthcare solution providers and a leading manufacturer and service provider in the fields of medical imaging, laboratory diagnostics, hospital information technology and hearing instruments. It offers solutions covering the entire supply chain under one roof - from prevention and early detection to diagnosis and on to treatment and aftercare. By optimizing clinical workflows oriented toward the most important clinical pictures, Siemens also strives to make healthcare faster, better and, at the same time, less expensive. Siemens Healthcare currently has some 48,000 employees worldwide and is present throughout the world. During fiscal 2010 (up to September 30) the Sector posted sales worth 12.4 billion euros and profits of around 750 million euros.

1 Robert Koch Institute, Ed.: Vol. 37 Gebärmuttererkrankungen [Hysteropathy], from the series "Gesundheitsberichterstattung des Bundes" [German Federal Health Monitoring], Berlin, January 2007

Marion Bludszuweit | Siemens Healthcare
Further information:
http://www.siemens.com/healthcare

More articles from Medical Engineering:

nachricht Biosensor allows real-time oxygen monitoring for 'organs-on-a-chip'
21.08.2018 | North Carolina State University

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>