Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical sensors improve with holey gold nanostructures

26.09.2013
A new method that fabricates gold nanostructures quickly and efficiently could lead to highly sensitive, portable medical sensors

Recent advances in nanotechnology are providing new possibilities for medical imaging and sensing. Gold nanostructures, for example, can enhance the fluorescence of marker dyes that are commonly used to detect biomolecules and diagnose specific diseases.


Localized surface plasmon resonance (bright areas) around a gold nanohole enhances the fluorescence of a biomarker dye (Y-shaped molecule) when a specific molecule of interest (purple circle) is present.
Copyright : © 2013 A*STAR Institute of High Performance Computing

Now, Ping Bai at the A*STAR Institute of High Performance Computing, Singapore, and co-workers have developed a fast and inexpensive way to fabricate arrays of gold nanoholes. The researchers have shown that sensor chips built using these nanostructures can accurately detect cancer-related molecules in blood and are small enough to be used in portable medical devices.

Nanohole arrays are designed so that incident light of certain wavelengths will induce large-scale oscillations of the gold electrons, known as localized surface plasmon resonance (SPR). The localized SPR focuses the absorbed light energy to enhance fluorescence (see image).

“Commercial SPR systems are already used in hospital laboratories, but they are bulky and expensive,” says Bai. “We would like to develop small, handheld devices for on-the-spot clinical use. This requires localized SPR, for which we need nanohole arrays.”

Previously, nanohole arrays have been created using electron-beam lithography (EBL), which is expensive and time consuming. Bai and co-workers used EBL to create a nickel mold and then used the mold to print nanohole patterns onto a photoresist material. The researchers made the nanostructures by evaporating gold onto the patterned structure before peeling off the photoresist material. Because the nickel mold can be reused many times, this method — called nano-imprinting — can produce large numbers of gold nanohole arrays.

“We fabricated arrays of 140 nanometer-square nanoholes with very few defects,” says Bai. As a first demonstration, the researchers showed that a sensor chip made with their nanohole arrays could detect prostate cancer antigens in blood, and was ten times more sensitive than an identical device that used a gold film without nanoholes. Optimizing the chip design would further improve the sensitivity, Bai notes.

The team believes that these chips could be incorporated into cheap and portable point-of-care devices for rapid diagnosis of diseases such as dengue fever. “The microfluidic cartridge built using our nanohole arrays is about the size of a credit card,” says Bai. “In the future, we hope to build detectors that use very simple light sources, such as LEDs, and simple detectors similar to smartphone cameras. These devices will have widespread applications across medical science and could even be used to detect contaminants in food, water or the air.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing, Institute of Materials Research and Engineering and Singapore Institute of Manufacturing Technology

Associated links
Wong, T. I., Han, S., Wu, L., Wang, Y., Deng, J. et al. High throughput and high yield nanofabrication of precisely designed gold nanohole arrays for fluorescence enhanced detection of biomarkers. Lab on a Chip 13, 2405–2413 (2013).

http://www.sciencedirect.com/science/article/pii/S0261306913005074

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg

More articles from Medical Engineering:

nachricht Medica 2018: New software for a more efficient planning of minimally invasive surgery
06.11.2018 | Technische Universität Kaiserslautern

nachricht SwRI improves structural health monitoring with magnetostrictive transducer
30.10.2018 | Southwest Research Institute

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>