Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medica 2018: New software for a more efficient planning of minimally invasive surgery

06.11.2018

In order to remove the appendix, usually only a small surgery tunnel is necessary. But doctors rely on such minimally invasive surgeries in other areas, such as tumor removal scenrios. However, such surgeries must be planned precisely in advance. Doctors use different diagnostic procedures to find the best solution, which is very time consuming. A Software developed by computer scientists from Kaiserslautern could help doctors to prepare for such operations more easily in the future. At the Medica medical technology trade fair in Düsseldorf from 12th to 15th November, the researchers will present their method at the research stand (hall 7a, stand B06) of Rhineland-Palatinate.

Many surgeons today use minimally invasive surgery to remove, for example, a tumour in the brain: A small hole in the cranium is sufficient for them to reach the affected area with a small probe. The probe is equipped with surgical instruments and a camera that provides the doctors with the necessary images.


Christina Gillmann and Robin Maack are developing the software.

Credits: Koziel/TUK


The Software developed by computer scientists from Kaiserslautern could help doctors to prepare for such minimally invasive operations more easily.

Credits: Koziel/TUK

“Such a surgery must be thoroughly planned beforehand,” says Dr Christina Gillmann of the Technische Universität Kaiserslautern (TUK). “Surgeons must locate the ideal route, i.e. the surgical channel, to the affected area, which damages as little important tissue in the brain as possible.”

For this purpose, they use images from magnetic resonance tomography (MRT) taken before the surgery. But other diagnostic procedures, such as computer tomography, are also used for such planning, depending on the disease in question.

These X-ray techniques provide physicians with images of patients on which they can see the body part to be operated in grey scales. “This data is often examined layer by layer in everyday clinical practice, however, with this technique it is often difficult to determine in which tissue layers there might be a suitable surgical channel,” explains the scientist.

A new procedure, on which Gillmann and her team are working, could remedy this problem: It enables doctors to plan their operations intuitively. “The computer program displays the individual tissue layers that are affected by a surgical channel,” says the computer scientist.

“This allows different channels to be compared and risks to be discussed.” In this way, doctors can also identify possible complications that might occur during the operation. “For example, the surgical team could discuss which route is the most appropriate for the individual patient,” Gillmann continues.

The computer scientists at the TUK use various medical images as a data basis for their method. Using their own calculation methods, they re-evaluate this image data. “We can visually separate and display the individual tissue layers so that it is easier to see where a surgical channel should be located,” explains Gillmann. The researchers have designed their technology in such a way that it is easy to use for surgeons.

The software is still in the development stage. “It will take a few more years before it can be used in clinical daily routine,” the computer scientist continues. The Kaiserslautern researchers are working closely with the Premier Health Hospital in Dayton, Ohio, USA.

Gillmann is researching in the field of “Computer Graphics and Human Computer Interaction” under Professor Dr Hans Hagen. Over the lst two decades, the research group has been working on processing medical imaging data in such a way that they can be used simply and reliably in everyday clinical practice. For example, they have succeeded in using their methods to separate tumours from healthy tissue more clearly in images. In their projects, the computer scientists work closely with various partners, including the University Hospital Leipzig and the Premier Health Hospital in Ohio.

Wissenschaftliche Ansprechpartner:

Dr Christina Gillmann
Computer Graphics and Human Computer Interaction
Phone: +49(0)631205-2642
E-mail: c_gillma(at)cs.uni-kl.de

Melanie Löw | Technische Universität Kaiserslautern
Further information:
http://www.uni-kl.de

More articles from Medical Engineering:

nachricht Faster detection of atrial fibrillation thanks to smartwatch
18.03.2019 | Universität Greifswald

nachricht A peek into lymph nodes
15.03.2019 | Tohoku University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>