Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Massachusetts General-developed protocol could greatly extend preservation of donor livers

30.06.2014

Supercooling and machine perfusion allow transplantation of rat livers preserved for up to four days

A system developed by investigators at the Massachusetts General Hospital (MGH) Center for Engineering in Medicine allowed successful transplantation of rat livers after preservation for as long as four days, more than tripling the length of time organs currently can be preserved. The team describes their protocol – which combines below-freezing temperatures with the use of two protective solutions and machine perfusion of the organ – in a Nature Medicine paper receiving advance online publication.


In a system developed at the Mass. General Hospital Center for Engineering in Medicine, perfusion of a rat liver with preservative solutions before and after supercooling helped enable successful transplantation after up to four days.

Credit: MGH Photography Department

"To our knowledge, this is the longest preservation time with subsequent successful transplantation achieved to date," says Korkut Uygun, PhD, of the MGH Center for Engineering in Medicine (MGH-CEM), co-senior author of the report. "If we can do this with human organs, we could share organs globally, helping to alleviate the worldwide organ shortage."

Once the supply of oxygen and nutrients is cut off from any organ, it begins to deteriorate. Since the 1980s, donor organs have been preserved at temperatures at or just above freezing (0˚ Celsius or 32˚ Fahrenheit) in a solution developed at the University of Wisconsin (UW solution), which reduces metabolism and organ deterioration ten-fold for up to 12 hours. Extending that preservation time, the authors note, could increase both the distance a donor organ could safely be transported and the amount of time available to prepare a recipient for the operation.

Keeping an organ at below-freezing temperatures, a process called supercooling, could extend preservation time by further slowing metabolism, it also could damage the organ in several ways. To reduce those risks the MGH-CEM protocol involves the use of two protective solutions – polyethylene glycol (PEG), which protects cell membranes, and a glucose derivative called 3-OMG, which is taken into liver cells.

After removal from donor animals, the livers were attached to a machine perfusion system – in essence, an 'artificial body' that supports basic organ function – where they were first loaded with 3-OMG and then flushed with a combination of UW and PEG solutions while being cooled to 4˚C (40˚ F). The organs were then submerged in UW/PEG solution and stored at -6˚C (21˚F) for either 72 or 96 hours, after which the temperature was gradually increased back to 4˚C. The organs were then machine perfused with UW/PEG solution at room temperature for three hours before being transplanted into healthy rats.

All of the animals that received organs supercooled for 72 hours were healthy at the end of the three-month study follow-up period. Although only 58 percent of animals receiving organs supercooled for 96 hours survived for three months, analysis of several factors done while the organs were being rewarmed could distinguish between the organs that were and were not successfully transplanted.

"This ability to assess the livers prior to transplantation allows us to determine whether the supercooled organ is still good enough for transplantation," explains study co-author Bote Bruinsma, MSc, of the MGH-CEM. "Even among the livers preserved for four days, if we had only used those in which oxygen uptake, bile production and the flow of perfusion solution were good, we would have achieved 100 percent survival."

While much work needs to be done before this approach can be applied to human patients, extending how long an organ can safely be preserved may eventually allow the use of organs currently deemed unsuitable for transplant, notes Martin Yarmush, MD, PhD, founding director of MGH-CEM and co-senior author of the paper. "By reducing the damage that can occur during preservation and transportation, our supercooling protocol may permit use of livers currently considered marginal – something we will be investigating – which could further reduce the long waiting lists for transplants." Yarmush and Uygun are both on the faculty of Harvard Medical School.

###

Lead author of the Nature Medicine report is Tim Berendsen, MD, formerly of the MGH Center for Engineering in Medicine and now at the University Medical Center at Utrecht, the Netherlands. Additional co-authors are Catheleyne Puts, Nima Saeidi, Berk Usta, Basak Uygun, Maria-Louisa Izamis and Mehmet Toner, all of the MGH-CEM. The study was supported by National Institutes of Health grants R01EB008678, R01DK096075, R01DK084053, R00DK080942 and R00DK088962 and funds from Shriners Hospitals for Children. Several patents covering the work described in this paper are pending.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $785 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Cassandra Aviles | Eurek Alert!

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>