Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lasers might be the cure for brain diseases such as Alzheimer’s and Parkinson’s

05.11.2013
Researchers at Chalmers University of Technology in Sweden, together with researchers at the Polish Wroclaw University of Technology, have made a discovery that may lead to the curing of diseases such as Alzheimer’s, Parkinson’s and Creutzfeldt-Jakob disease (the so called mad cow disease) through photo therapy.

The researchers discovery, which was published yesterday in the journal Nature Photonics, is that it is possible to distinguish aggregations of the proteins, believed to cause the diseases, from the the well-functioning proteins in the body by using multi-photon laser technique.


Structure of properly functioning protein (left) which is optically invisible to high power laser light, and toxic amyloid (right) responsible for brain diseases that might poten

Piotr Hanczyc, Chalmers University of Technology

“Nobody has talked about using only light to treat these diseases until now. This is a totally new approach and we believe that this might become a breakthrough in the research of diseases such as Alzheimer’s, Parkinson’s and Creutzfeldt-Jakob disease. We have found a totally new way of discovering these structures using just laser light”, says Piotr Hanczyc at Chalmers University of Technology.

If the protein aggregates are removed, the disease is in principle cured. The problem until now has been to detect and remove the aggregates.

The researchers now harbor high hopes that photo acoustic therapy, which is already used for tomography, may be used to remove the malfunctioning proteins. Today amyloid protein aggregates are treated with chemicals, both for detection as well as removal. These chemicals are highly toxic and harmful for those treated.

With multi photon laser the chemical treatment would be unnecessary. Nor would surgery be necessary for removing of aggregates. Due to this discovery it might, thus, be possible to remove the harmful protein without touching the surrounding tissue.

These diseases arise when amyloid beta protein are aggregated in large doses so they start to inhibit proper cellular processes.

Different proteins create different kinds of amyloids, but they generally have the same structure. This makes them different from the well-functioning proteins in the body, which can now be shown by multi photon laser technique.

Scientific article: Multiphoton absorption in amyloid protein fibres

For more information, please contact:
Piotr Hanczyc, Chalmers University of Technology, +46 720 08 03 14, hanczyc@chalmers.se

Bengt Nordén, Chalmers University of Technology, +46 730 34 64 41, norden@chalmers.se

Johanna Wilde, Press communicator, johanna.wilde@chalmers.se, +46-31-772 20 29

Weitere Informationen:

http://www.nature.com/nphoton/journal/vaop/ncurrent/full/nphoton.2013.282.html Scientific article

http://www.mynewsdesk.com/uk/chalmers/images/properly-functioning-protein-and-amyloid-238841

Download high resolution image

Johanna Wilde | idw
Further information:
http://www.vr.se
http://www.chalmers.se

More articles from Medical Engineering:

nachricht MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound
18.10.2019 | Fraunhofer-Institut für Biomedizinische Technik IBMT

nachricht NUS scientist designs 'express courier service' for immune cells
07.10.2019 | National University of Singapore

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>