Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser processes promise better artificial joints, arterial stents

17.09.2009
Researchers are developing technologies that use lasers to create arterial stents and longer-lasting medical implants that could be manufactured 10 times faster and also less expensively than is now possible.

New technologies will be needed to meet the huge global market for artificial hips and knees, said Yung Shin, a professor of mechanical engineering and director of Purdue's Center for Laser-Based Manufacturing.

The worldwide population of people younger than 40 who receive hip implants is expected to be 40 million annually by 2010 and double to 80 million by 2030. In addition to speeding production to meet the anticipated demand, Shin said another goal is to create implants that last longer than today's.

"We have 200,000 total hip replacements in the United States," he said. "They last about 10 years on average. That means if you receive an implant at 40, you may need to have it replaced three or four times in your lifetime."

One of the researchers' techniques works by depositing layers of a powdered mixture of metal and ceramic materials, melting the powder with a laser and then immediately solidifying each layer to form parts. Because the technique enables parts to be formed one layer at a time, it is ideal for coating titanium implants with ceramic materials that mimic the characteristics of natural bone, Shin said.

Findings will be detailed in a presentation this week during the International Medical Device Expo's Advanced Laser Applications Conference in San Jose, Calif.

"Titanium and other metals do not match either the stiffness or the nature of bones, so you have to coat it with something that does," Shin said. "However, if you deposit ceramic on metal, you don't want there to be an abrupt change of materials because that causes differences in thermal expansion and chemical composition, which results in cracks. One way to correct this is to change the composition gradually so you don't have a sharp boundary."

The gradual layering approach is called a "functionally gradient coating."

Researchers used their laser deposition processes to create a porous titanium-based surface and also a calcium phosphate outer surface, both designed to better match the stiffness of bone than conventional implants.

The laser deposition process enables researchers to make parts with complex shapes that are customized for the patient.

"Medical imaging scans could just be sent to the laboratory, where the laser deposition would create the part from the images," Shin said. "Instead of taking 30 days like it does now because you have to make a mold first, we could do it in three days. You reduce both the cost and production time."

The laser deposition technique lends itself to the requirement that each implant be designed specifically for each patient.

"These are not like automotive parts," Shin said. "You can't make a million that are all the same."

The process creates a strong bond between the material being deposited and the underlying titanium, steel or chromium. Tests showed the bond was at least seven times as strong as industry standards require, he said.

The researchers use computational modeling to simulate, study and optimize the processes.

Additional research is needed before the techniques are ready for commercialization. Future work will involve studying "shape-memory" materials that are similar to bone and also have a self-healing capability for longer-lasting implants.

The researchers also are developing a technique that uses an "ultra short pulse laser" to create arterial stents, which are metal scaffolds inserted into arteries to keep them open after surgeries to treat clogs. The laser pulses last only a matter of picoseconds, or quadrillionths of a second.

Because the pulses are so fleeting, the laser does not cause heat damage to the foil-thin stainless steel and titanium material used to make the stents. The laser removes material in precise patterns in a process called "cold ablation," which turns solids into a plasma. The patterns enable the stents to expand properly after being inserted into a blood vessel.

The work is funded by the National Science Foundation.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu
Source: Yung Shin, (765) 494-9775, shin@purdue.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>