Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins Team Deploys Hundreds of Tiny Untethered Surgical Tools in First Animal Biopsies

24.04.2013
By using swarms of untethered grippers, each as small as a speck of dust, Johns Hopkins engineers and physicians say they have devised a new way to perform biopsies that could provide a more effective way to access narrow conduits in the body as well as find early signs of cancer or other diseases.

In two recent peer-reviewed journal articles, the team reported successful animal testing of the tiny tools, which require no batteries, wires or tethers as they seize internal tissue samples. The devices are called “mu-grippers,” incorporating the Greek letter that represents the term for “micro.”

Instead of relying on electric or pneumatic power, these star-shaped tools are autonomously activated by the body’s heat, which causes their tiny “fingers” to close on clusters of cells. Because the tools also contain a magnetic material, they can be retrieved through an existing body opening via a magnetic catheter.

In the April print edition of Gastroenterology, the researchers described their use of the mu-grippers to collect cells from the colon and esophagus of a pig, which was selected because its intestinal tract is similar to that of humans. Earlier this year, the team members reported in the journal Advanced Materials that they had successfully inserted the mu-grippers through the mouth and stomach of a live animal and released them in a hard-to-access place, the bile duct, from which they obtained tissue samples.

“This is the first time that anyone has used a sub-millimeter-sized device—the size of a dust particle—to conduct a biopsy in a live animal,” said David Gracias, an associate professor of chemical and biomolecular engineering whose lab team developed the microgrippers. “That’s a significant accomplishment. And because we can send the grippers in through natural orifices, it is an important advance in minimally invasive treatment and a step toward the ultimate goal of making surgical procedures noninvasive.”

Another member of the research team, physician Florin M. Selaru of the Johns Hopkins School of Medicine, said the mu-grippers could lead to an entirely new approach to conducting biopsies, which are considered the “gold standard” test for diagnosing cancer and other diseases.

The advantage of the mu-grippers, he said, is that they could collect far more samples from many more locations. He pointed out that the much larger forceps used during a typical colonoscopy may remove 30 to 40 pieces of tissue to be studied for signs of cancer. But despite a doctor’s best intentions, the small number of specimens makes it easy to miss diseased lesions.

“What’s the likelihood of finding the needle in the haystack?” said Selaru, an assistant professor in the Division of Gastroenterology and Hepatology. “Based on a small sample, you can’t always draw accurate inferences. We need to be able to do a larger statistical sampling of the tissue. That’s what would give us enough statistical power to draw a conclusion, which, in essence, is what we’re trying to do with the microgrippers. We could deploy hundreds or even thousands of these grippers to get more samples and a better idea of what kind of or whether a disease is present.”

Although each mu-gripper can grab a much smaller tissue sample than larger biopsy tools, the researchers said each gripper can retrieve enough cells for effective microscopic inspection and genetic analysis. Armed with this information, they said, the patient’s physician could be better prepared to diagnose and treat the patient.

This approach would be possible through the latest application of the Gracias lab’s self-assembling tiny surgical tools, which can be activated by heat or chemicals, without relying on electrical wires, tubes, batteries or tethers. The low-cost devices are fabricated through photolithography, the same process used to make computer chips. Their fingerlike projections are made of materials that would normally curl inward, but the team adds a polymer resin to give the joints rigidity and to keep the digits from closing.

Prior to a biopsy, the grippers are kept on ice, so that the fingers remain in this extended position. An endoscopy tool then is used to insert hundreds of grippers into the area targeted for a biopsy. Within about five minutes, the warmth of the body causes the polymer coating to soften, and the fingers curl inward to grasp some tissue. A magnetic tool is then inserted to retrieve them.

Although the animal testing results are promising, the researchers said the process will require further refinement before human testing can begin. “The next step is improving how we deploy the grippers,” Selaru said. “The concept is sound, but we still need to address some of the details. The other thing we need to do is thorough safety studies.”

Further development can be costly, however. The team has applied for grants to fund advances in the project, which is protected by provisional patents obtained through the Johns Hopkins Technology Transfer Office. Biotechnology investors might also help move the project forward. “It is more a question of money than time as to how long it will take before we could use this in human patients,” Selaru said

Along with Gracias and Selaru, the Johns Hopkins researchers who contributed significantly to the two journal articles were Evin Gultepe, Sumitaka Yamanaka, Eun Shin and Anthony Kalloo. Additional contributors were Kate E. Laflin, Sachin Kadam, Yoosun Shim, Alexandru V. Olaru, Berkeley Limketkai, Mouen A. Khashab and Jatinder S. Randhawa. The researchers are affiliated with the School of Medicine, the Whiting School of Engineering and the Johns Hopkins Institute for NanoBioTechnology.

Funding for this research has come from the National Institutes of Health, the National Science Foundation, the Flight Attendants Medical Research Institute and the Broad Medical Research Institute.

The Advanced Materials journal article can be viewed here:
Biopsy with thermally-responsive untethered microtools, E. Gultepe, J. S. Randhawa, S. Kadam, S. Yamanaka, F. M. Selaru, E. J. Shin, A. N. Kalloo, D. H. Gracias, Advanced Materials 25, 4, 514-519 (2013) (Video Link: Deployment of the mu-grippers) (Video Link: Retrieval of the mu-grippers)

The Gastroenterology journal article and accompanying video can be viewed here:
Biologic tissue sampling with untethered microgrippers, E. Gultepe, S. Yamanaka, K. E. Laflin, S. Kadam, Y.S. Shim, A. V. Olaru, B. Limketkai, M. A. Khashab, A. N. Kalloo, D. H. Gracias, F. M. Selaru, Gastroenterology 144, 4, 691-693 (2013).

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Medical Engineering:

nachricht New insight into the brain’s hidden depths: Jena scientists develop minimally-invasive endoscope
27.11.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New China and US studies back use of pulse oximeters for assessing blood pressure
21.11.2018 | University of British Columbia

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>