Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intensity modulated proton therapy reduces need for feeding tubes by 50 percent

26.09.2013
Advanced form of proton therapy offers quality of life benefits compared to standard treatment, prompts further study by MD Anderson Researchers

A new study from researchers at The University of Texas MD Anderson Proton Therapy Center found that the use of feeding tubes in oropharyngeal carcinoma (OPC) cancer patients treated with intensity modulated proton therapy (IMPT) decreased by more than 50 percent compared to patients treated with intensity modulated radiation therapy (IMRT). This suggests that proton therapy may offer vital quality of life benefits for patients with tumors occurring at the back of the throat.

The results, presented today by the lead researcher, Steven J. Frank, M.D., associate professor of Radiation Oncology at MD Anderson at the American Society for Radiation Oncology's 55th Annual Meeting, also indicate that toxicity levels in OPC patients treated with IMPT are much lower than those treated with IMRT.

IMPT, one of the most advanced forms of proton therapy, delivers a precise dose of protons to tumors embedded in the "nooks and crannies" of the head and neck, including the base of tongue and tonsils. MD Anderson treated its first IMPT patient in 2011 and since approximately 150 patients, many with complex head and neck malignancies, have been treated with this form of proton therapy. Unlike IMRT, which destroys both cancerous and healthy cells, IMPT has the ability to destroy cancer cells while sparing surrounding healthy tissue from damage. Therefore, important quality of life outcomes such as neurocognitive function, vision, swallowing, hearing, taste and speech can be preserved in head and neck patients.

"IMPT is especially well-suited for patients with the most complicated tumors of the head and neck, precisely painting the protons onto the tumor layer by layer," said Frank. "In this way, the treatment team can confine the majority of the tumor-damaging energy to target areas and work to protect normal structures such as the oral cavity and brainstem."

OPC cancer develops in the part of the throat just behind the mouth. The American Cancer Society estimates that 36,000 people in the U.S. are diagnosed with cancer of the oral cavity and oropharynx each year (approximately a 20 percent increase since 2010). OPC cancer in most cases is linked to infection with human papilloma virus (HPV) and it's estimated that nearly 70 percent of OPC cancers are HPV-positive.

MD Anderson researchers evaluated 25 OPC patients treated with IMPT and 25 OPC patients treated with IMRT as part of the study. Five patients treated with IMPT required the use of feeding tubes (20 percent) compared to 12 patients treated with IMRT (48 percent). IMPT patients were spared from other serious side effects caused by the toxicity of IMRT such as vomiting, nausea, hearing problems, and mucositis (inflammation and ulceration of the digestive track). In addition, patients could better sustain their nutrition and hydration levels, often leading to faster recovery during and after treatment.

"With a recent epidemic of HPV-associated head and neck cancer among U.S. adults, there is a critical need to minimize the side effects associated with conventional IMRT that affects the patients' courses of treatments, and, ultimately, the rest of their lives," said Frank. "Since radiation therapy is the main tool to treat the disease in this fairly young group of patients, we must understand if more advanced technologies will provide additional value to this patient population."

Based on the results of this study, a Phase II/III randomized trial of IMPT vs. IMRT for the treatment of oropharyngeal cancer of the head and neck is underway at MD Anderson. Over the next five years, MD Anderson aims to enroll 360 patients in the trial, evaluating proton's ability to reduce toxicity across a range of known side effects and enhance long-term cancer survivorship when compared to conformal radiation therapy.

Other MD Anderson researchers contributing to this study include David Rosenthal, M.D., Kie-Kian Ang, M.D., G. Brandon Gunn, M.D., X. Ronald Zhu, M.D., Matthew B. Palmer, M.B.A., C.M.D., and Adam Garden, M.D., all of Radiation Oncology; Erich Sturgis, M.D., Mark Chambers, M.D., and Katherine Hutcheson, M.D., of Head and Neck Surgery.

Agata Porter | EurekAlert!
Further information:
http://www.mdanderson.org/

Further reports about: IMPT IMRT OPC Oncology Radiation healthy cell oral cavity quality of life radiation therapy

More articles from Medical Engineering:

nachricht New insight into the brain’s hidden depths: Jena scientists develop minimally-invasive endoscope
27.11.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New China and US studies back use of pulse oximeters for assessing blood pressure
21.11.2018 | University of British Columbia

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>