Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intelligent ultrasonic sensors for postoperative bladder monitoring

18.06.2020

After surgeries on the bladder, prostate or kidneys, a permanent irrigation of the bladder is often decisive for a successful healing process. An intelligent system called "VisIMon" was designed to support this. The Fraunhofer Institute for Biomedical Engineering IBMT is developing the miniaturized ultrasound system for automated monitoring of bladder irrigation.

Blood in the urine is a common symptom after surgical interventions on the urinary tract of any kind. Continuous bladder irrigation is used as a standard after operations on the bladder, prostate or kidneys to avoid complications caused by blood coagulation.


Portable tablet-driven ultrasound imaging system VisIMon and self-adhesive ultrasound transducer.

© Fraunhofer IBMT

If there are blood clots, there is a high risk that this clot can fill the bladder, which often makes further (avoidable) surgery necessary. However, constant monitoring of bladder irrigation is not possible in everyday clinical practice, making a technical solution for effective, permanent monitoring most interesting.

Intelligent sensors for effective automated monitoring

The BMBF joint project "VisIMon", led by the German Research Center for Artificial Intelligence, aims to enable automated monitoring that will contribute to improved patient care while at the same time reducing the workload on staff.

"VisIMon" stands for a networked, intelligent and interactive system for the continuous, perioperative monitoring and control of an irrigation device and for the functional monitoring of the lower urinary tract.

Since the end of 2017, an interdisciplinary team of scientists, physicians and industry has been developing a small module worn on the body that monitors the irrigation process with the aid of various sensors and which can ideally be integrated in established care procedures.

Innovative data handling approaches make it possible to realize completely new concepts - such as medical devices that automatically exchange data with the hospital's IT network.

With more than 200,000 applications per year in Germany, the development is extremely attractive not only from a medical but also from an economic point of view.

Miniaturized ultrasound systems for ideal patient care

The Fraunhofer Institute for Biomedical Engineering IBMT possesses many years of experience in the design, development and manufacturing of innovative ultrasound transducers and systems for research and medical application. Within the framework of the joint project, IBMT scientists are developing a miniaturized ultrasound system for the automated monitoring of bladder irrigation.

The system consists of an adhesive ultrasonic transducer patch, which, together with miniaturized electronics and automated evaluation algorithms, will be used to monitor bladder irrigation and detect possible bleeding.

A patented ultrasound patch technology by IBMT was used to develop the highly compact 32-element sensor that can be attached to the skin for continuous postoperative monitoring of the bladder.

The newly developed 32-channel electronics, on which the ultrasound data are processed and evaluated, can be controlled via mobile consumer devices (e. g. a tablet). With the selected system concept, a large part of the data processing - such as the reconstruction of the measured signals to cross-sectional images of the bladder - is carried out on the tablet.

The concept not only leads to lower costs, but also allows to take profit from the continuously improving performance of new end-user devices. The "VisIMon" software is also designed to forward data from various patient systems together with other parameters to central processing units in order to optimally ensure the continuous monitoring of bladder irrigation, which is indispensable after a surgical procedure, even in a tense staff situation.

Potential for further application scenarios

The concept of a low-cost ultrasound hardware such as developed within the project, whose performance spectrum is mostly defined by the algorithms used for signal processing, can be transferred relatively easily to other applications. For instance, the technology could be used as a monitoring system for incontinence patients.

An ultrasound transducer patch could constantly monitor the bladder level and send signals to a mobile end user device via miniaturized electronics, where they could be translated into recommendations for action after automated data analysis.

Together with the open interfaces and access to all data types along the processing pipeline, the system can also be used as a low-cost ultrasound research system. In addition, as application example within the medical-diagnostic field, it could be used as low-cost imaging system, for example for areas suffering from medical undersupply.

Funding: BMBF 16SV7861K
Funding period: 011/2017-10/2020


Partners (Germany)
Albert Ludwig University Freiburg
Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach
Lohmann & Birkner Health Care Consulting GmbH, Berlin
Digital Biomedical Imaging Systems AG, Pforzheim

Wissenschaftliche Ansprechpartner:

Contact at the Fraunhofer IBMT
Dr. Marc Fournelle
Head of Business Area Medical Ultrasound
Phone: +49 6897 9071 310
E-mail: marc.fournelle@ibmt.fraunhofer.de

Coordinator
Dr. rer. nat. Dipl.-Inf. Gerd Reis
DFKI - German Research Center for Artificial Intelligence, Kaiserslautern, Germany
Phone: +49 631 20575 2090
E-mail: Gerd.Reis@dfki.de

Weitere Informationen:

https://www.ibmt.fraunhofer.de/en.html
https://www.ibmt.fraunhofer.de/en/ibmt-core-competences/ibmt-ultrasound/ibmt-bio...

Dipl.-Phys. Annette Maurer-von der Gathen | Fraunhofer-Institut für Biomedizinische Technik IBMT

More articles from Medical Engineering:

nachricht Artificial intelligence identifies, locates seizures in real-time
30.06.2020 | Washington University in St. Louis

nachricht Wearable Health
29.06.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

The lightest electromagnetic shielding material in the world

02.07.2020 | Materials Sciences

Spintronics: Faster data processing through ultrashort electric pulses

02.07.2020 | Information Technology

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>