Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Instron Testing Solutions for Medical Engineering and Biotechnology: Easy-to-Clean BioCoat Protects Instron® Testing Systems

27.06.2012
BioCoat is a new polyurethane protective cover designed for Instron® Series 5940 single column testing systems.
Their applications include mechanical low-force in-vitro testing of biomaterials and components as well as materials for medical and biotechnology devices in temperature-controlled baths containing fluids such as water, saline solutions, blood or blood simulation products.

The cover prevents leaking or spilled fluids from these baths from penetrating into the test system and damaging its sensitive electronic components. The BioCoat’s extremely smooth surface enables contaminations to be removed easily and is resistant to the usual detergents.

The cover is available as a separate component and can be retrofitted on the test frame in just a few steps. All connections and controls remain easily accessible, and the system's functionality is fully retained. BioCoat is compatible with all fixtures, grips, baths, extensometers and platens from the Instron standard range of accessories.

Biomedical testing is a typical application for Series 5940 single-column testing systems. Instron® 5942, 5943 and 5944 combine high accuracy and optimum flexibility to meet a wide variety of requirements when testing medical devices and biomaterials such as tissues, elastomers, wires, or films. Their small footprint saves valuable space in the test laboratory. A high-stiffness test frame ensures optimum repeatability of test conditions and reliable test results. Test speeds range from 0.05 to 2500 mm/min; nominal force capacities are 0.5 kN for the 5942 system, 1 kN for the 5943, and 2 kN for the 5944 system.

All three are designed to work with both Instron's BioPuls submersible grips and Instron’s BioPuls bath, specifically dedicated to biomedical testing. The particularly light-weight pneumatic grips are easy to fasten and to align, and prevent slippage of the specimens under load. Typical applications include tests conducted at very low forces, such as testing of hydrogels, contact lenses or filaments, as well as testing of natural or artificial tissues, tubing or foils at loads up to 250 N. The BioPuls temperature-controlled bath enables precise simulation of the conditions present in a living organism. The pneumatic lifting device facilitates handling, increases productivity and minimizes the risk of contamination of the laboratory environment. The bath can be used together with high-precision, non-contacting Instron® AVE video extensometers, which – unlike conventional clip-on extensometers – have no adverse effects on delicate specimens.

For further information about the use of Instron® testing systems in biomedical testing go to go.instron.com/biomedtesting

Instron (www.instron.de) is a globally leading manufacturer of test equipment for the material and structural testing markets. A global company providing single-source convenience, Instron manufactures and services products used to test the mechanical properties and performance of various materials, components and structures in a wide array of environments. Instron systems evaluate materials ranging from the most fragile filament to advanced high-strength alloys. With the combined experience of CEAST in designing plastic testing systems, Instron enhances materials testing offerings, providing customers with comprehensive solutions for all their research, quality and service-life testing requirements. Additionally, Instron offers a broad range of service capabilities, including assistance with laboratory management, calibration expertise and customer training. Instron is part of the US based Illinois Tool Works (ITW) group of companies with more than 850 distributed business units in 52 countries worldwide and a staff of approx. 60,000.

Editorial contact and address for voucher copies:
Dr.-Ing. Jörg Wolters, Konsens PR GmbH & Co. KG,
Hans-Kudlich-Straße 25, D-64823 Groß-Umstadt – www.konsens.de
Tel.: +49 (0) 60 78 / 93 63 - 0, Fax: - 20, E-Mail: mail@konsens.de

Dr.-Ing. Jörg Wolters | Konsens PR

More articles from Medical Engineering:

nachricht Stanford develops wireless sensors that stick to the skin to track our health
16.08.2019 | Stanford University

nachricht Operating on Hips in a Virtual Operating Room
13.08.2019 | Technische Universität Chemnitz

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>