Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Instron Testing Solutions for Medical Engineering and Biotechnology: Easy-to-Clean BioCoat Protects Instron® Testing Systems

27.06.2012
BioCoat is a new polyurethane protective cover designed for Instron® Series 5940 single column testing systems.
Their applications include mechanical low-force in-vitro testing of biomaterials and components as well as materials for medical and biotechnology devices in temperature-controlled baths containing fluids such as water, saline solutions, blood or blood simulation products.

The cover prevents leaking or spilled fluids from these baths from penetrating into the test system and damaging its sensitive electronic components. The BioCoat’s extremely smooth surface enables contaminations to be removed easily and is resistant to the usual detergents.

The cover is available as a separate component and can be retrofitted on the test frame in just a few steps. All connections and controls remain easily accessible, and the system's functionality is fully retained. BioCoat is compatible with all fixtures, grips, baths, extensometers and platens from the Instron standard range of accessories.

Biomedical testing is a typical application for Series 5940 single-column testing systems. Instron® 5942, 5943 and 5944 combine high accuracy and optimum flexibility to meet a wide variety of requirements when testing medical devices and biomaterials such as tissues, elastomers, wires, or films. Their small footprint saves valuable space in the test laboratory. A high-stiffness test frame ensures optimum repeatability of test conditions and reliable test results. Test speeds range from 0.05 to 2500 mm/min; nominal force capacities are 0.5 kN for the 5942 system, 1 kN for the 5943, and 2 kN for the 5944 system.

All three are designed to work with both Instron's BioPuls submersible grips and Instron’s BioPuls bath, specifically dedicated to biomedical testing. The particularly light-weight pneumatic grips are easy to fasten and to align, and prevent slippage of the specimens under load. Typical applications include tests conducted at very low forces, such as testing of hydrogels, contact lenses or filaments, as well as testing of natural or artificial tissues, tubing or foils at loads up to 250 N. The BioPuls temperature-controlled bath enables precise simulation of the conditions present in a living organism. The pneumatic lifting device facilitates handling, increases productivity and minimizes the risk of contamination of the laboratory environment. The bath can be used together with high-precision, non-contacting Instron® AVE video extensometers, which – unlike conventional clip-on extensometers – have no adverse effects on delicate specimens.

For further information about the use of Instron® testing systems in biomedical testing go to go.instron.com/biomedtesting

Instron (www.instron.de) is a globally leading manufacturer of test equipment for the material and structural testing markets. A global company providing single-source convenience, Instron manufactures and services products used to test the mechanical properties and performance of various materials, components and structures in a wide array of environments. Instron systems evaluate materials ranging from the most fragile filament to advanced high-strength alloys. With the combined experience of CEAST in designing plastic testing systems, Instron enhances materials testing offerings, providing customers with comprehensive solutions for all their research, quality and service-life testing requirements. Additionally, Instron offers a broad range of service capabilities, including assistance with laboratory management, calibration expertise and customer training. Instron is part of the US based Illinois Tool Works (ITW) group of companies with more than 850 distributed business units in 52 countries worldwide and a staff of approx. 60,000.

Editorial contact and address for voucher copies:
Dr.-Ing. Jörg Wolters, Konsens PR GmbH & Co. KG,
Hans-Kudlich-Straße 25, D-64823 Groß-Umstadt – www.konsens.de
Tel.: +49 (0) 60 78 / 93 63 - 0, Fax: - 20, E-Mail: mail@konsens.de

Dr.-Ing. Jörg Wolters | Konsens PR

More articles from Medical Engineering:

nachricht First COVID-19 Patient in Germany successfully treated with novel Diaphragm Therapy
10.07.2020 | Universität Greifswald

nachricht Restoring Vision Through Electrical Stimulation
09.07.2020 | Universität Zürich

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Color barcode becomes ISO standard

14.07.2020 | Information Technology

New substance library to accelerate the search for active compounds

14.07.2020 | Life Sciences

Green is more than skin-deep for hundreds of frog species

14.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>