Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Instron Testing Solutions for Medical Engineering and Biotechnology: Easy-to-Clean BioCoat Protects Instron® Testing Systems

27.06.2012
BioCoat is a new polyurethane protective cover designed for Instron® Series 5940 single column testing systems.
Their applications include mechanical low-force in-vitro testing of biomaterials and components as well as materials for medical and biotechnology devices in temperature-controlled baths containing fluids such as water, saline solutions, blood or blood simulation products.

The cover prevents leaking or spilled fluids from these baths from penetrating into the test system and damaging its sensitive electronic components. The BioCoat’s extremely smooth surface enables contaminations to be removed easily and is resistant to the usual detergents.

The cover is available as a separate component and can be retrofitted on the test frame in just a few steps. All connections and controls remain easily accessible, and the system's functionality is fully retained. BioCoat is compatible with all fixtures, grips, baths, extensometers and platens from the Instron standard range of accessories.

Biomedical testing is a typical application for Series 5940 single-column testing systems. Instron® 5942, 5943 and 5944 combine high accuracy and optimum flexibility to meet a wide variety of requirements when testing medical devices and biomaterials such as tissues, elastomers, wires, or films. Their small footprint saves valuable space in the test laboratory. A high-stiffness test frame ensures optimum repeatability of test conditions and reliable test results. Test speeds range from 0.05 to 2500 mm/min; nominal force capacities are 0.5 kN for the 5942 system, 1 kN for the 5943, and 2 kN for the 5944 system.

All three are designed to work with both Instron's BioPuls submersible grips and Instron’s BioPuls bath, specifically dedicated to biomedical testing. The particularly light-weight pneumatic grips are easy to fasten and to align, and prevent slippage of the specimens under load. Typical applications include tests conducted at very low forces, such as testing of hydrogels, contact lenses or filaments, as well as testing of natural or artificial tissues, tubing or foils at loads up to 250 N. The BioPuls temperature-controlled bath enables precise simulation of the conditions present in a living organism. The pneumatic lifting device facilitates handling, increases productivity and minimizes the risk of contamination of the laboratory environment. The bath can be used together with high-precision, non-contacting Instron® AVE video extensometers, which – unlike conventional clip-on extensometers – have no adverse effects on delicate specimens.

For further information about the use of Instron® testing systems in biomedical testing go to go.instron.com/biomedtesting

Instron (www.instron.de) is a globally leading manufacturer of test equipment for the material and structural testing markets. A global company providing single-source convenience, Instron manufactures and services products used to test the mechanical properties and performance of various materials, components and structures in a wide array of environments. Instron systems evaluate materials ranging from the most fragile filament to advanced high-strength alloys. With the combined experience of CEAST in designing plastic testing systems, Instron enhances materials testing offerings, providing customers with comprehensive solutions for all their research, quality and service-life testing requirements. Additionally, Instron offers a broad range of service capabilities, including assistance with laboratory management, calibration expertise and customer training. Instron is part of the US based Illinois Tool Works (ITW) group of companies with more than 850 distributed business units in 52 countries worldwide and a staff of approx. 60,000.

Editorial contact and address for voucher copies:
Dr.-Ing. Jörg Wolters, Konsens PR GmbH & Co. KG,
Hans-Kudlich-Straße 25, D-64823 Groß-Umstadt – www.konsens.de
Tel.: +49 (0) 60 78 / 93 63 - 0, Fax: - 20, E-Mail: mail@konsens.de

Dr.-Ing. Jörg Wolters | Konsens PR

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>