Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative Tomographic Imaging Process

04.04.2013
Scanning Laser Optical Tomography (SLOT) is a fast method which can be used for imaging biological tissue or complete organs in a high 3-D resolution.

The Laser Zentrum Hannover e.V. (LZH) has filed a patent application for a SLOT process, which was originally developed as a 3-D fluorescence process for quickly scanning larger samples. SLOT, which can be viewed as the optical equivalent to computer tomography, works with isotropic resolution, that is, with the same resolution in all three spatial planes.


Data of a murine lung. Left: Transmission image (photo-diode). Middle: Autofluorescence image (photo multiplier tube). Right: Superposition of both signals (red: PD, green: PMT). (Scale 500 µm)

It simultaneously records transmissive, scattered and fluorescent light. Samples can thus be imaged with a 3-D resolution of at least 1/1000 of the object size, in a short time. The goal of the current project is further development of this promising technology, so that an imaging speed of 20 seconds for 600 individual projections can be reached.

SLOT has several advantages over optical projection tomography: Apart from homogeneous lighting with a 300 times higher photon exploitation and a high signal-to-noise ratio of 10-90 dB, ring artefacts and speckles can be avoided, due to one-dimensional detection. Furthermore, the process can be also be used with intrinsic (absorption, scattering, auto-fluorescence) and extrinsic (fluorescence and absorption marker) contrast mechanisms.

Based on intrinsic contrast processes, high resolution, ex vivo volumetric images could be made, for example of locust heads and mouse lungs. By using absorption and auto-fluorescent imaging, the researchers at the LZH could image lung structures down to the resolution of a single alveola.

Further, SLOT can be used to determine objects on non-transparent sample surfaces. In 2012, the three-dimensional visualization of bacteria growth on the surface of dental implants was possible, including images of the in vitro development of the micro-organisms. As fluorescent staining was not necessary, these images were given a fourth dimension.

The technical basis for this process uses detection of the scattered laser light from living bio-films, or correspondingly the wavelength-dependent absorption of metabolism markers such as 2,3,5- Triphenyltetrazoliumchloride (TTC), which are implemented and enriched in the metabolically active bacteria cells in 1,3,5 Triphenylformazan (TPF).

Currently, various investigations on establishing this new imaging process are being carried out in close cooperation with the University of Veterinary Medicine Hannover and the Hannover Medical School. Scientists in the Biophotonic Imaging and Manipulation Group at the LZH are working together with industrial partners to establish SLOT as a fully-automated tomographic module, the so-called Laser-Scanning Tomographic Module (LSTM)., Built into an existing confocal and 2-photon microscope, this unit could be used to monitor the fluctuation of NAD/NADH, cAMP or calcium ions, or for the analysis of the intra- and extracellular accumulation of micro- and nanoparticles in cell aggregates. LSTM is also a promising, innovative technology for non-invasive, temporally and spatially resolved investigations on artificial tissue, which is subsequently subject to in vitro investigations.

The development of LSTM is financially supported by the German Federal Ministry of Economics and Technology (BMWi) within the Framework of the Central Innovation Program SME (ZIM). Besides the LZH, project partners are the companies LaVision BioTec GmbH and Scivis wissenschaftliche Bildverarbeitung GmbH.

Contact:
Laser Zentrum Hannover e.V.
Michael Botts
Hollerithallee 8
D-30419 Hannover, Germany
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de

The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).

Michael Botts | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de

More articles from Medical Engineering:

nachricht Reinforcement learning expedites 'tuning' of robotic prosthetics
18.01.2019 | North Carolina State University

nachricht Powerful microscope captures first image of nanoscaffold that promotes cell movement
14.01.2019 | Sanford Burnham Prebys Medical Discovery Institute

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Mechanical engineers develop process to 3D print piezoelectric materials

22.01.2019 | Materials Sciences

Energizing the immune system to eat cancer

22.01.2019 | Health and Medicine

Early Prediction of Alzheimer’s Progression in Blood

22.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>