Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovations in ultrasound imaging improve breast cancer detection

30.10.2018

A new ultrasound technique can help distinguish benign breast tumours from malignant ones. The technology was developed with support from the Swiss National Science Foundation.

Ultrasound is one of the three main technologies used in medical imaging. It is more compact and affordable than nuclear magnetic resonance imaging (MRI) techniques, and safer than x-rays. But the images it produces are often difficult to interpret.


With support from the SNSF, a team from ETH Zurich has developed a new method based on the speed of sound. In initial clinical trials, the team’s prototype showed great promise in detecting breast cancer. The researchers have published their work in the journal Physics in Medicine and Biology.

Measuring the speed of sound, not the quantity

An ultrasound probe emits sound waves that penetrate the body. Because organs and tissues have different physical properties, they reflect the waves differently. The device analyses these “echoes” and reconstructs a three-dimensional image of the inside of the body, called an “echograph” or, more commonly, ultrasound.

Usually, the device measures the intensity of the reflected sound waves. But the Zurich team takes an additional parameter into account, namely the echo duration. This new method produces images with enhanced contrast, which could prove useful for cancer diagnosis: It not only detects the presence of tumours; it also aids in distinguishing benign tumours from malignant ones.

This innovation relies on a simple principle: the density and rigidity of the tissues determine the speed of the sound echo. Because tumours are more rigid than the surrounding tissue, especially when they are cancerous. As a result, sound travels 3% faster on average in malignant tissues than in healthy tissues, and also 1.5% faster than in benign tumours.

A simple change of software

During clinical trials, the Zurich team demonstrated the effectiveness of their prototype in detecting breast tumours. “Our goal is to provide physicians with a better tool for decision-making during routine checks, and to avoid unnecessary biopsies,” says Orçun Göksel, assistant professor at ETH Zurich and director of the study. “Compared with conventional ultrasound, our images are much easier to interpret.”

The technique can be used with any equipment, because the key innovation is the processing software. A device that exploits the speed of sound recently entered the market, but it requires a cumbersome and expensive infrastructure – the part of the body being observed needs to be submerged in degassed water.

“Ultrasound is successful because it is safe, portable and inexpensive,” says Göksel. “Any physician’s office can accommodate a compact, handheld probe. Our technology preserves these advantages while addressing the main limitation of conventional ultrasound – image quality – which is still a problem for diagnosis in many clinical cases.”

The team is continuing clinical trials – particularly in the area of liver disease and certain muscular disorders due to ageing that often lead to stiffening of tissues. Their patent-pending technique requires only minor adaptations to current devices. “As a result,” says Göksel, “it could find rapid commercialisation. Thanks to a grant from Innosuisse, we are currently developing a system that will work at the push of a button and hopefully be used by hospitals every day.”

This work was funded by the SNSF as well as by a Pioneer Fellowship from ETH Zurich. The researchers received the 2016 Spark Award from ETH Zurich and the Swiss Venture Best Idea Award for 2017.

The text of this press release, a download image and further information are available on the website of the Swiss National Science Foundation:

Wissenschaftliche Ansprechpartner:

Prof. Orçun Göksel
Computer-assisted Applications in Medicine, ETH Zurich
Sternwartstrasse 7, 8092 Zurich
Telephone: +41 44 632 25 29
Email: ogoksel@vision.ee.ethz.ch

Originalpublikation:

(*) S.J. Sanabria, E. Ozkan, M. Rominger and O. Goksel.: Spatial Domain Reconstruction for Imaging Speed-of-Sound with Pulse-Echo Ultrasound. Physics in Medicine and Biology (2018) doi: 10.1088/1361-6560/aae2fb
http://www.vision.ee.ethz.ch/~ogoksel/pre/Sanabria_spatial_18pre.pdf

Weitere Informationen:

http://www.snf.ch/en/researchinFocus/newsroom/Pages/news-181030-press-release-in...
https://www.youtube.com/watch?v=_cfzUU1oayQ

Media - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

Further reports about: ETH Zurich SNF Ultrasound benign breast cancer breast cancer detection sound waves tumours

More articles from Medical Engineering:

nachricht Artificial intelligence identifies, locates seizures in real-time
30.06.2020 | Washington University in St. Louis

nachricht Wearable Health
29.06.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Rising water temperatures could endanger the mating of many fish species

03.07.2020 | Life Sciences

Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus

03.07.2020 | Studies and Analyses

Efficient, Economical and Aesthetic: Researchers Build Electrodes from Leaves

03.07.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>