Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Implantable, Wireless Sensors Share Secrets of Healing Tissues

23.02.2012
Engineering Researchers at Rensselaer Polytechnic Institute Create Smart Sensor To Help Personalize Medicine by Wirelessly Transmitting Data From Orthopedic Surgery Site

A new implantable sensor developed at Rensselaer Polytechnic Institute can wirelessly transmit data from the site of a recent orthopedic surgery. Inexpensive to make and highly reliable, this new sensor holds the promise of more accurate, more cost-effective, and less invasive post-surgery monitoring and diagnosis.


Rensselaer/Ledet
A new implantable sensor developed at Rensselaer Polytechnic Institute can wirelessly transmit data from the site of a recent orthopedic surgery. Inexpensive to make and highly reliable, this new sensor holds the promise of more accurate, more cost-effective, and less invasive post-surgery monitoring and diagnosis.

Following an orthopedic procedure, surgeons usually rely on X-rays or MRIs to monitor the progress of their patient’s recovery. The new sensors, created by Rensselaer faculty researcher Eric Ledet, would instead give surgeons detailed, real-time information from the actual surgery site. This in vivo data could lead to more accurate assessments of a patient’s recovery, or provide better insight into potential complications.

The wireless sensor measures only 4 millimeters in diameter and 500 microns thick. It needs no battery, no external power, and requires no electronics within the body. Instead, the sensor is powered by the external device used to capture the sensor data.

“Our new sensor will give surgeons the opportunity to make personalized, highly detailed, and very objective diagnoses for individual patients,” said Ledet, assistant professor in the Department of Biomedical Engineering at Rensselaer. “The simplicity of the sensor is its greatest strength. The sensor is inexpensive to produce, requires no external power source, yet it is robust and durable. We are very excited about the potential of this new technology.”

The sensors look like small coils of wire and are attached to commonly used orthopedic musculoskeletal implants such as rods, plates, or prostheses. Once implanted in the in vivo environment, the sensor can monitor and transmit data about the load, strain, pressure, or temperature of the healing surgery site. The sensor is scalable, tunable, and easy to configure so that it may be incorporated into many different types of implantable orthopedic devices.

One key benefit of this new technology is the possibility of more accurate assessments by physicians for when recovering patients are able to return to work without a risk of further injury.

“Having a stream of real-time in vivo data should take some of the approximation and subjectivity out of declaring a patient recovered and ready to return to work,” Ledet said.

Ledet and his research team have filed for patent protection for their new sensor. They currently make each sensor by hand, but are investigating methods for mass production. Ledet has been working on this sensor technology for about five years, and has presented his progress at several conferences. His most recent presentation was earlier this month in San Francisco at the Orthopaedic Research Society (ORS) 2012 Annual Meeting.

Ledet, who earned his master’s and doctoral degrees from Rensselaer in 1995 and 2003, conducted this research in collaboration with colleagues at Albany Medical College. Ledet’s co-investigator on this project is Dr. Richard Uhl, who earned his bachelor’s degree from Rensselaer and is head of the Division of Orthopedic Surgery at Albany Medical College.

For additional information on Ledet’s research at Rensselaer, visit:

• Faculty Home Page
http://www.eng.rpi.edu/soe/index.php/faculty/154?soeid=ledete
• Rensselaer Engineering Students To Visit South Africa and Help Innovate New Solutions to Unique Medical Challenges

http://news.rpi.edu/update.do?artcenterkey=2964

Michael Mullaney | Newswise Science News
Further information:
http://www.rpi.edu

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>