Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Higher wear comfort and functionality with 3-D printed otoplastics

09.10.2015

Wear comfort and excellent sound transmission are essential for people who use in-ear hearing aids or headsets. Since June 2015, the Laser Zentrum Hannover e.V. (LZH) and seven partners have been working in the group 3D-PolySPRINT on increasing both the functionality and wear comfort, and simultaneously on reducing delivery times. They are focusing on non-tactile imaging and combined multi-material 3-D printing processes in order to manufacture otoplastics which are optimally adapted to the auditory canal.

For a hearing aid or an individualized in-ear-headset, presently a mold of the ear is made, then digitized and finally used to manufacture the otoplastic. The project partners of 3D-PolySPRINT want to fundamentally change this approach.


Participants at the Kick-Off-Meeting in July, in front of the Sennheiser Innovation Campus.

Photo: Sennheiser

Digital Mold of the Auditory Canal

Using the non-tactile imaging method of optical coherence tomography (OCT), they want to make a digital image of the auditory canal without having to make a mold. First the ear is optically scanned, and the form is digitized.

For the next step, the group Image-Guided Laser Surgery of the LZH is developing a software which converts the raw image data of the scan to a construction file. Once in the computer, the data can be further processed quickly, and molds do not need to be sent to other sites, and then scanned.

A hard core and a soft covering

Using the digitized data of the individual ear, the partners want to optimize both the function and the wear comfort of the ear mold for the customer, and avoid unpleasant pressure sores. To achieve this, the partners are combining two additive manufacturing processes, spray coating and Laser Transfer Printing (LTP), in order to join two different materials together, and to make a hardness profile within the ear mold.

The Laser Micromachining Group of the LZH is developing the necessary process, and is examining the new materials concerning their suitability, always keeping the criteria of the end users Sennheiser electronic GmbH & Co KG and KIND Hörgeräte GmbH in mind.

Increasing wear comfort and decreasing delivery times

With this innovative process chain of OCT and 3-D printing, not only the manufacturing of the otoplastics is considerably more pleasant for the customers. Also, the headset or the hearing aid would be usable for longer periods of time, it would provide better sound quality, and it would reach the customer at least a day earlier.

About 3D-PolySPRINT

The joint project 3D-PolySPRINT is being coordinated by the Sennheiser electronic GmbH & Co. KG and consists of the companies KIND Hörgeräte GmbH & Co. KG, OptoMedical Technologies GmbH, Materialise GmbH, Dreve ProDiMed GmbH, microTEC Gesellschaft für Mikrotechnologie mbH, LPKF Laser & Electronics AG and the LZH.

The work is being funded within the call for proposals “Photonic Process Chains” within the framework of the programs “Photonic Research Germany” and “Material Technologies for Industry and Society (WING)” through the German Federal Ministry of Education and Research, and will be running for three years.

Dr. Nadine Tinne | Laser Zentrum Hannover e.V.
Further information:
http://www.lzh.de/

More articles from Medical Engineering:

nachricht Rutgers researchers develop automated robotic device for faster blood testing
14.06.2018 | Rutgers University

nachricht Speech comprehension with a cochlear implant
04.06.2018 | Universität zu Lübeck

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>