Groundbreaking device improves laser accuracy in surgeries

“The issue of depth control has always been a problem in laser surgery,” says professor James Fraser. “There are many surgical procedures where we would like to use lasers but we can't because they are too difficult to control. Our technology may enable new laser surgeries that weren't possible before.”

The development of the control technology has led Dr. Fraser and doctoral student Paul Webster to explore industrial applications. Currently, they are building an advanced laser processing station which opens up myriad opportunities.

“In addition to the surgical application, depth control can significantly improve laser welding,” says Mr. Webster. “Improvements to our advanced manufacturing capabilities ultimately lead to cheaper and more fuel efficient aircraft, cars and ships.”

A laser equipped with the new direct sensor could be used to inspect parts as they are welded, cutting down on waste and improving safety. Once the new laser processing station is completed, testing will begin with members of Ontario's automotive manufacturing industry.

Media Contact

Anne Craig EurekAlert!

More Information:

http://www.queensu.ca

All latest news from the category: Medical Engineering

The development of medical equipment, products and technical procedures is characterized by high research and development costs in a variety of fields related to the study of human medicine.

innovations-report provides informative and stimulating reports and articles on topics ranging from imaging processes, cell and tissue techniques, optical techniques, implants, orthopedic aids, clinical and medical office equipment, dialysis systems and x-ray/radiation monitoring devices to endoscopy, ultrasound, surgical techniques, and dental materials.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors