Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gentle sensors for diagnosing brain disorders

29.09.2016

New sensor design paves the way for safer and more effective brain monitoring.

exible, low-cost sensor technology leading to safer and improved diagnoses and treatment of brain disorders has been developed by Saudi Arabia's King Abdullah University of Science and Technology (KAUST) scientists [1].


Through Polymer Vias based 3D integration simplifies the path towards high-resolution brain machine interfaces. © 2016 KAUST

Mapping the electrical activity of the brain is critical in understanding neurological disorders, such as depression and Alzheimer’s disease. Currently, multielectrode arrays, called Michigan or Utah arrays, are used to monitor brain activity. Made from layers of conductive silicon needles, these rigid devices are inserted through the scalp to monitor the brain’s surface. The needles can cause inflammation of the tissues and so they must be removed within a year.

Muhammad Hussain and Aftab Hussain from the KAUST Integrated Nanotechnology Laboratory and Integrated Disruptive Electronic Applications Laboratory wanted to develop a soft and flexible sensor that could be placed on the surface of the brain within the intracranial space, providing better contact and reducing the risk of damage to tissues.

“Sensors require associated electronics to interface with us, and these electronics dissipate heat causing a burning effect in the brain which can permanently damage tissues,” explains Muhammad Hussain. “The challenge is to keep the electronics away from the brain.”

Working within these parameters, they fabricated a sensor made from gold electrodes encased in a polymer coating with their connections oriented vertically, and, by placing the connectors on top of the sensor and allowing them to pass through the polymer support, an integrated circuit (IC) could be attached to the flip side of the device, isolating it from the brain surface and preventing hotspots.

The intracranial space of the brain presents an area of only 64 cm2 for mapping more than 80 billion neurons, so not only is it safer to prevent the electronics from making contact with the brain, it also maximizes the number of neurons that can be monitored by the sensor array.

“The sensor is in contact with the soft tissues of the brain, where it collects activity data, and the IC is placed on top, with a soft insulating polymeric material separating them, allowing a larger area to be mapped and a reduction in the heating effect,” says Hussain.

By using state-of-the-art technology, used for fabricating integrated circuits, the researchers have developed a method that could lead to mass-produced sensors that are safer, have improved mapping capabilities, and are also robust enough for long lasting functionality.

“We are currently collaborating with Harvard-MIT Medical Institute on using the technique to improve the efficiency of the mapping interface system,” says Hussain.

Associated links

Journal information

[1] Hussain, A.M. and Hussain, M.M. Deterministic integration of out-of-plane sensor arrays for flexible electronic applications. Small, 25 July 2016 (doi: 10.1002/smll.201600952).

Michelle D'Antoni | Research SEA
Further information:
http://www.researchsea.com

More articles from Medical Engineering:

nachricht New insight into the brain’s hidden depths: Jena scientists develop minimally-invasive endoscope
27.11.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New China and US studies back use of pulse oximeters for assessing blood pressure
21.11.2018 | University of British Columbia

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>