Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gentle diagnosis of esophageal diseases


10 to 20 percent of people in the western world suffer from a reflux disease in which acid stomach contents flow back into the oesophagus. In order to find out where the causes lie, patients have to undergo a lengthy and not very pleasant examination. A research team from the Leibniz Institute of Photonic Technology (Leibniz IPHT) in Jena is working on a new diagnostic device that will make this procedure faster, more meaningful and less stressful for patients.

In order to find out how the complex interaction of the oesophagus muscles is disturbed, a measuring catheter determines the pressure distribution over the entire length of the oesophagus.

Interferometer to write fiber Bragg gratings into the fiber core

Sven Döring / Leibniz-IPHT

Catheter for oesophagus examination


With fiber optic sensors, the scientists from Leibniz IPHT engineer high-resolution catheters that are no thicker than 4 millimeters. This simplifies the application and makes the measurement more comfortable for the patient.

In order to simultaneously measure the pressure at many different points of the esophagus and thus be able to analyze the peristaltic movements, the researchers arrange ten to fifteen fiber-optic "strain gages" — so-called fiber Bragg grating sensors — in an optical fiber.

Different wavelengths of the individual sensors determine at which points the measurements are carried out. Thanks to additional fiber-optic sensors in the area of the stomach and above, the catheter can simultaneously determine and link pressure, pH and bile values. This enables doctors to gain new insights into the causes of diseases.

The catheter is connected to a handy device, so that patients will be able to use it at home for measurements over a longer period of 24 hours and more. This will enable doctors to detect disorders that occur only occasionally.

"We have already reached a relatively high technology readiness level," says fiber researcher and technologist Manfred Rothhardt, who coordinates the project and has been researching fiber-optic sensors at Leibniz IPHT for many years. In two years' time, he and his team plan to present the diagnostic device, which will then be tested on patients for over a year.

For the project entitled Optimo (OPTIcal fiber device for simultaneous manometry, pH-metry and bilimetry in Oesophagus), the research team is working with the companies Jenaer Technische Instrumente (JETI) and Oscomed from Sonneberg as well as with partners from the Italian CNR Institute for Applied Physics in Sesto Fiorentino, the University of Florence and Cecchi Srl, also based there. The German Federal Ministry of Education and Research is funding the research project with approximately 650,000 euros over the next three years as part of the EU "PhotonicSensing" program.

Wissenschaftliche Ansprechpartner:

Manfred Rothhardt​
Leibniz Institute of Photonic Technology, Jena
Department: Fiber Research and Technology
+49 (0) 3641 · 206-213

Weitere Informationen:

Lavinia Meier-Ewert | idw - Informationsdienst Wissenschaft

More articles from Medical Engineering:

nachricht Sweat for health: Sensor Patches as Fitness Trackers
28.07.2020 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Images from the inside of blood vessels
27.07.2020 | Universität Stuttgart

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

Im Focus: A new method to significantly increase the range and stability of optical tweezers

Scientists of Tomsk Polytechnic University jointly with a team of the V.E. Zuev Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy of Sciences have discovered a method to increase the operation range of optical traps also known

Optical tweezers are a device which uses a laser beam to move micron-sized objects such as living cells, proteins, and molecules. In 2018, the American...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

Latest News

Collisions in the solar system: Bayreuth researchers explain the origins of stony-iron meteorites

03.08.2020 | Physics and Astronomy

Improving the monitoring of ship emissions

03.08.2020 | Ecology, The Environment and Conservation

Time To Say Goodbye: The MOSAiC floe’s days are numbered

31.07.2020 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>