Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fraunhofer ITEM takes over and continues development of inhalation technology assets from Takeda

10.02.2016

The Fraunhofer-Gesellschaft, on behalf of the Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, has signed an asset transfer agreement with Takeda GmbH to exclusively transfer its Surfactant and Continuous Powder Aerosolization (CPA) program assets to Fraunhofer ITEM.

The transfer includes the CPA technology for continuous aerosolization of powdery substances and the know-how to manufacture recombinant surfactant protein C, together with the associated intellectual property. The Fraunhofer ITEM is thus in a position to continue the development of therapies involving continuous inhalation various medications, begun 10 years ago.


Closing down its respiratory department, Takeda transferred its Surfactant and CPA program assets to Fraunhofer ITEM including the associated intellectual property. The CPA technology is the first non-invasive administration method for powdery surfactant drugs.

Surfactant drugs have to be administered to patients with surfactant deficiency, which is common, for example, in preterm in neonates. Furthermore, this therapeutic approach has been investigated in other acute and chronic life-threatening diseases such as acute lung injury and COPD.

Surfactant (“surface-active agent“) is secreted by certain lung cells und reduces surface tension in the alveoli, thereby preventing their collapse. Physical activity causes an increase, smoking a decrease in surfactant production. Fetal surfactant production starts in week 24 of gestation. Preterm neonates, in particular if born before week 34 of gestation, suffer from varying degrees of pulmonary surfactant deficiency, which may lead to neonate respiratory distress syndrome.

Surfactant-based therapy is the standard of care. Its use is limited, however, due to the currently invasive administration methodology. The CPA technology simplifies surfactant delivery to neonates and can also be used for children and adults. Recombinant surfactant protein C is the first recombinant surfactant protein suitable for use in synthetic surfactant drugs.

CPA is also a suitable technology to continuously deliver pulmonary high doses of non-soluble drugs to patients. In respiratory care, the standard of aerosolization for continuous inhalation is currently confined to different classes of nebulizers. In contrast, the CPA technology for the first time enables continuous inhaled administration of non-soluble drugs. In addition, it delivers a higher drug concentration to patients and enables a higher lung deposition rate.

Dr. Gerhard Pohlmann, Head of Medical Inhalation Technology at Fraunhofer ITEM with a 10+ year track record in CPA technology development, said: “As a long-standing partner in the CPA program, Fraunhofer ITEM is delighted to continue development of the surfactant and CPA technology platform. We are currently in the strategic process of reorganizing the program and selecting development partners.”

Contact
Fraunhofer ITEM
Dr. Gerhard Pohlmann; +49 511 5350-116
gerhard.pohlmann@item.fraunhofer.de

Press contact
Fraunhofer ITEM
Dr. Cathrin Nastevska; +49 511 5350-225
cathrin.nastevska@item.fraunhofer.de

Weitere Informationen:

The text of this press release can be found on our homepage at
http://www.item.fraunhofer.de/en/press-media/latest-news/pm-CPA-takeda.html

Dr. Cathrin Nastevska | Fraunhofer Institute for Toxicology and Experimental Medicine

More articles from Medical Engineering:

nachricht Faster detection of atrial fibrillation thanks to smartwatch
18.03.2019 | Universität Greifswald

nachricht A peek into lymph nodes
15.03.2019 | Tohoku University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

Im Focus: A thermo-sensor for magnetic bits

New concept for energy-efficient data processing technology

Scientists of the Department of Physics at the University of Hamburg, Germany, detected the magnetic states of atoms on a surface using only heat. The...

Im Focus: The moiré patterns of three layers change the electronic properties of graphene

Combining an atomically thin graphene and a boron nitride layer at a slightly rotated angle changes their electrical properties. Physicists at the University of Basel have now shown for the first time the combination with a third layer can result in new material properties also in a three-layer sandwich of carbon and boron nitride. This significantly increases the number of potential synthetic materials, report the researchers in the scientific journal Nano Letters.

Last year, researchers in the US caused a big stir when they showed that rotating two stacked graphene layers by a “magical” angle of 1.1 degrees turns...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

How heavy elements come about in the universe

18.03.2019 | Physics and Astronomy

Robot arms with the flexibility of an elephant’s trunk

18.03.2019 | Power and Electrical Engineering

Microbes can grow on nitric oxide (NO)

18.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>