Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could FastStitch device be the future of suture?

17.08.2012
After a surgeon stitches up a patient's abdomen, costly complications -- some life-threatening -- can occur. To cut down on these postoperative problems, Johns Hopkins undergraduates have invented a disposable suturing tool to guide the placement of stitches and guard against the accidental puncture of internal organs.

The student inventors have described their device, called FastStitch, as a cross between a pliers and a hole-puncher. Although the device is still in the prototype stage, the FastStitch team has already received recognition and raised more than $80,000 this year in grant and prize money to move their project forward. Among their wins were first-place finishes in University of California, Irvine, and University of Maryland business plan competitions and in the ASME International Innovation Showcase.

The FastStitch device is needed, the students say, to improve the way up to 5 million open abdominal surgeries are conducted annually in the United States alone for treatment of cancer, liver problems and other common ailments. If incisions from those procedures are not closed properly, a patient can develop complications such as infection, herniation and evisceration, all of which require additional treatment and in some cases, more surgery. Just one of these complications --herniation, in which intestinal tissue can protrude through the abdominal wall after the muscle layer splits apart -- leads to $2.5 billion in additional costs annually in follow-up treatment and medical malpractice expenses, the students said.

Addressing this problem became a biomedical engineering course assignment for eight Johns Hopkins students over the past school year. They were asked to design and test a tool that that would improve the way surgeons stitch together the strongest part of the abdomen, the muscle layer called the fascia, which is located just below the patient's skin. "Doctors who have to suture the fascial layer say it can be like pushing a needle through the leather of your shoe," said team member Luis Hererra, a sophomore biomedical engineering major from Downey, Calif. "If the needle accidentally cuts into the bowel, it can lead to a sepsis infection that can be very dangerous."

To help prevent this, the students designed the FastStitch needle to remain housed within the jaws of the stitching tool. "You place the fascial layer between the top and bottom arms of the device," said Sohail Zahid, of Morris Plains, N.J., leader of the student team. "Then, as you close the arms, the spring-loaded clamp is strong enough to punch the needle through the fascial layer. When this happens, the needle moves from one arm of the tool to the other."

The device also features a visual guide to help ensure that the stitches are placed evenly, located the proper distance away from the incision and apart from one another. This should also reduce postoperative complications, the students said. The hand-size pliers-like shape was chosen because it would feel familiar to surgeons and require less training. The prototype was constructed mostly of ABS plastic, so that the instrument can be inexpensive and discarded after one use.

"We're developing the future of suture," said Zahid, who earned his undergraduate degree in May and has applied to Johns Hopkins' M.D./Ph.D. program in biomedical engineering. "We believe that if the FastStitch tool is used to close abdominal incisions, it will help in three important ways: It will help surgeons by making the closure process simpler and safer. It will help hospitals by reducing costs. And, most importantly, it will help patients by reducing post-operative complications."

Physician Hien Nguyen, an assistant professor of surgery in the Johns Hopkins School of Medicine, served as the students' clinical advisor during the development of FastStitch. "Just about every major operation in the chest and abdomen requires a large cut to be made through the muscle layers," he said. "If these layers are not brought back together evenly, complications can occur. This device allows the surgeon to bring the muscle layers back together evenly, safely and quickly, and this can lead to better outcomes and fewer complications."

Nguyen had discussed the need for a better suture tool with the undergraduate design team in a program offered by the Department of Biomedical Engineering, which is shared by the university's School of Medicine and its Whiting School of Engineering. The course is conducted within the Center for Bioengineering Innovation and Design.

In addition to Zahid and Herrera, the other students who have participated in the FastStitch project are Andy Tu, Daniel Peng, Stephen Van Kootyen, Leslie Myint, Anvesh Annadanam and Haley Huang. Through the Johns Hopkins Technology Transfer office, the team members have obtained preliminary patent protection for their invention. All eight students are listed as co-inventors, along with Nguyen and Johns Hopkins graduate student Adam Clark.

The students have formed a Baltimore-based company, Archon Medical Technologies, to conduct further research and development of FastStitch. The company is being supported by grant funding and by most of the prize money won in the student invention and business plan contests earlier this year. Animal testing of the device is under way, and further testing with human cadavers is expected to begin later this year.

Color images and video available; contact Phil Sneiderman.
Related links:
Johns Hopkins Department of Biomedical Engineering: www.bme.jhu.edu
Center for Bioengineering Innovation & Design: http://cbid.bme.jhu.edu/
Whiting School of Engineering: http://engineering.jhu.edu/
Archon Medical Technologies: http://www.archonmed.com
Note: A video related to this release is at
http://www.youtube.com/watch?v=nSx88E131oo

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu
http://www.youtube.com/watch?v=nSx88E131oo

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>