Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eye scan makes diseases visible at an early stage

06.09.2019

More and more people over 50 are suffering from age-related vision disorders. According to the World Health Organization, in four out of five cases they could be avoided if they were diagnosed at an early stage. A European team of scientists, including the Leibniz Institute of Photonic Technology (Leibniz IPHT) in Jena, has researched a new method that will enable doctors to better detect such eye diseases in the future. The optical method can provide detailed information on the condition of the retinal tissue. With this eye scan, physicians will be able to detect aggressive forms of age-related macular degeneration sooner and even detect neurodegenerative diseases such as Alzheimer's.

A laser beam hits the eye. This sounds more like a risk of injury at first, but in this case it opens up a chance of healing. "We use laser light to obtain comprehensive molecular information about the retina and thus early indications of diseases," explains Clara Stiebing from Leibniz IPHT.


The European research team is building a device on which patients can scan their eyes without contact and receive a diagnosis a few minutes later.

Ewald Unger/ Medical University of Vienna

In order to find out how much laser power the eye can tolerate and which optical pathway the laser takes, the researcher examined retinal samples and designed a structure simulating the conditions in the human eye.

Clara Stiebing and the research team from Leibniz IPHT, Friedrich Schiller University Jena, Medical University Vienna and partners from the Netherlands published their study in the journal "Neurophotonics".

How intense the laser can be without harming the eye, the scientists have calculated exactly on the basis of applicable safety regulations. The result: a laser beam that is twenty times weaker than the lasers that researchers otherwise use for their spectroscopic measurements.

Using label-free, molecularly sensitive Raman spectroscopy, they are able to obtain a molecular fingerprint of the retina. This reveals how high the content of lipids, proteins, carotenoids and nucleic acids is. In this way, changes in the retina become visible, enabling doctors to detect diseases at an early stage.

A particular challenge for the researchers was that the conditions in the human eye were not optimal for optical measurements. "The fact that we are still able to achieve meaningful, reliable results with the attenuated laser beam clearly shows that our technology will enable us to obtain comprehensive molecular information about the structure of the retina in the future," said Clara Stiebing.

The partners of the Medical University of Vienna are currently building a device that combines Raman spectroscopy with optical coherence tomography (OCT). With the help of OCT, the morphology of the retina can be very quickly made visible and suspicious areas can be identified. Raman spectroscopy can then be used to characterise these areas at the molecular level.

"This enables us to obtain high-resolution images from all layers of the retina including information on their molecular composition," explains Prof. Jürgen Popp, scientific director of Leibniz IPHT. "The fact that we can now supplement the OCT previously used in ophthalmology with Raman spectroscopy can significantly improve the accuracy of the diagnoses.“

The European research team is currently working on the medical approval of the device. Once approved, the device can be tested on patients. The patients would then sit in front of the device, have their eye scanned without contact and a few minutes later, they would receive a reliable diagnosis.

The new technologies for the diagnosis of age-related eye diseases and neurodegenerative diseases are being researched by scientists at Leibniz IPHT in Jena together with partners from Austria, France and the Netherlands.

The European Union is funding the MOON project (multimodal optical diagnostics for age-related diseases of the eye and central nervous system) as part of the Horizon2020 program with around 3.7 million euros as an initiative of the Photonics Public-Private-Partnership Photonics21. The research team plans to be able to carry out initial measurements on patients by the end of the project period at the end of 2020.

More information can be found at http://moon2020.meduniwien.ac.at

Originalpublikation:

https://www.spiedigitallibrary.org/journals/neurophotonics/volume-6/issue-04/041...

Weitere Informationen:

https://www.leibniz-ipht.de/en/institute/presse/news/detail/augenscan-macht-kran...

Lavinia Meier-Ewert | idw - Informationsdienst Wissenschaft

More articles from Medical Engineering:

nachricht Ear’s inner secrets revealed with new technology
08.04.2020 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht The human body as an electrical conductor, a new method of wireless power transfer
08.04.2020 | Universitat Pompeu Fabra - Barcelona

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

 
Latest News

Doubts about basic assumption for the universe

08.04.2020 | Physics and Astronomy

Accelerating AI Together – DFKI Welcomes NVIDIA as Newest Shareholder

08.04.2020 | Information Technology

Ear’s inner secrets revealed with new technology

08.04.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>