Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers complete first comprehensive mesh-free numerical simulation of skeletal muscle tissue

01.10.2014

Engineers complete first comprehensive mesh-free numerical simulation of skeletal muscle tissue

Engineers at the University of California, San Diego, have completed the first comprehensive numerical simulation of skeletal muscle tissue using a method that uses the pixels in an image as data points for the computer simulation—a method known as mesh-free simulation.


From left: Distribution of maximum stress in the 3D model; and a cross-section

showing maximum stress.

The researchers, led by J.S. Chen, the William Prager Professor of structural engineering at the Jacobs School of Engineering at UC San Diego, presented their findings on the development of this method at the CompIMAGE'14 conference in Pittsburgh this month. Chen also gave a keynote speech about the work.

Chen’s group has now expanded the use of mesh-free simulation methods to investigate aging and disorders impacting muscle functions, such as muscular dystrophy. “Another area of application for this framework would be the simulation of tissue injuries caused by extreme events such as blasts, car crashes and sport collisions”. Chen said. This will require adding the mechanics of tissue damage to the simulation model, including how tissue behaves and functions under high velocity impact.

Traditionally, engineers rely on the reconstruction of the geometry captured by from CT scans or MRI images to create simulation models of biological materials, such as muscle tissue.  The reconstructed 3D geometry is then used to generate a mesh to describe the material’s structure—this is known as the conventional finite element method. This procedure is extremely time consuming and labor intensive.

Using the mesh-free method cuts back on the amount of time for the process of generating the simulation model because researchers don’t have to build a mesh for the structure they’re trying to simulate, said Ramya Rao Basava, the lead Ph.D. student on the study.

For this study, researchers in Chen’s group used Magnetic Resonance and Diffusion Tensor images for the mesh-free simulation. The images were obtained through the Department of Radiology at UC San Diego. The image data acquired was from 10 volunteers between the ages of 20 to 90. The younger subjects were mostly in their 20s and 30s, the older ones mostly in their 80s.

Chen’s research group used the simulation techniques they developed to look at how much force is generated from various muscle systems, and more specifically at how loss of force relates to loss of muscle volume due to aging. They found that the loss of force is greater than the loss of volume, which is consistent with prior physiological studies.

Chen is a leader in the field of computational mechanics, particularly mesh-free methods for structures and materials subjected to large deformation and damages.

Chen’s research group has advanced mesh-free method research to achieve high accuracy and efficiency in simulating a wide range of engineering and scientific problems that are difficult or impossible to simulate via mesh-based methods, for example, fragment-impact modeling for homeland security applications, landslide simulations in natural disaster predictions, manufacturing processes and contact-impact modeling in the automotive industry, multi-scale materials modeling in material science applications and modeling of DNA-protein interaction, among others. Recently, his research group has started venturing into the field of simulation for biological materials such as muscle tissue.

Chen is also the faculty director of UC San Diego’s new Center for Extreme Events Research, which has been established to offer solutions to a wide range of challenges associated with extreme events, such as blasts and landslides, and brings together unique experimental technologies and advances in computational methods. 

Media Contacts

Ioana Patringenaru
Jacobs School of Engineering
Phone: 858-822-0899
ipatrin@ucsd.edu

Ioana Patringenaru | Eurek Alert!
Further information:
http://www.jacobsschool.ucsd.edu/news/news_releases/release.sfe?id=1577

More articles from Medical Engineering:

nachricht New insight into the brain’s hidden depths: Jena scientists develop minimally-invasive endoscope
27.11.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New China and US studies back use of pulse oximeters for assessing blood pressure
21.11.2018 | University of British Columbia

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>