Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronic nose sniffs out prostate cancer using urine samples

02.05.2014

Novel noninvasive technique successfully discriminates between prostate cancer and benign disease in proof of principle study, paving the way for easy and early diagnosis, reports the Journal Of Urology

We may soon be able to make easy and early diagnoses of prostate cancer by smell. Investigators in Finland have established that a novel noninvasive technique can detect prostate cancer using an electronic nose. In a proof of principle study, the eNose successfully discriminated between prostate cancer and benign prostatic hyperplasia (BPH) by "sniffing" urine headspace (the space directly above the urine sample).

Results using the eNose are comparable to testing prostate specific antigen (PSA), reports the Journal of Urology®.

Prostate cancer is the second most common cancer in males and one of the leading causes of cancer death. The heterogeneity of prostate cancer makes it difficult to diagnose and predict tumor progression. Both of the current cornerstones of diagnosis, i.e. digital rectal examination (DRE) and PSA have limitations, while ultrasound guided biopsies are costly, uncomfortable for the patient, and have a risk of infection.

Additionally, significant numbers of diagnosed prostate cancers are of low grade and will not cause symptoms or disease-specific mortality. Therefore, aggressive treatment can lead to decreased quality of life without extending the patient's life. Thus, there is a need for novel diagnostic tools.

In the 1980s incidental reports of dogs that detected cancer in their owners sparked a number of experimental studies that have since confirmed that trained sniffer dogs can detect cancer. However, variations in the performance of dogs during and between studies have meant that these findings are of limited application. A more promising development is the growth of sensor technology (generally referred to as artificial olfaction) that has led to the invention of numerous new types of olfactory electronic sensors.

eNoses are best suited for qualitative analysis of complex gaseous mixtures of molecules, and are routinely used in food and agricultural quality control and military applications. The eNose used in the current study is a device that consists of a cluster of nonspecific sensors. When the device is exposed to the sample, it produces a profile or a "smell print."

"eNoses have been studied in various medical applications, including early detection of cancer, especially from exhaled air," says lead investigator Niku KJ. Oksala, MD, PhD, DSc, of the Department of Surgery, School of Medicine, University of Tampere and Department of Vascular Surgery, Tampere University Hospital, Finland. "However, exhaled air is a problematic sample material since it requires good cooperation and technique from the patient and immediate analysis, while urine is simple to attain and store, and is therefore more feasible in clinical practice. Preliminary data suggested that detection of urologic malignancies from urine headspace was possible. Our own preliminary results on prostate cancer cells encouraged us to launch this prospective clinical study."

The ChemPro® 100–eNose (Environics Inc., Mikkeli, Finland) was tested on 50 patients who had been diagnosed with prostate cancer confirmed by biopsy, and 15 patients with BPH. Both groups were scheduled for surgery. The patients provided urine samples before surgery and those with benign disease also provided samples three months after surgery to be used as a pooled control sample population. Patients with prostate cancer underwent robotic assisted laparoscopic radical prostatectomy, while the benign disease group underwent transurethral resection of prostate.

Results with the eNose confirmed that using urine headspace, the eNose is able to discriminate prostate cancer from BPH. The eNose achieved a sensitivity of 78%, specificity of 67% and AUC of 42.0.

"The performance with the eNose matches that of PSA results in previous literature and the results are achieved rapidly and in a completely noninvasive manner," comments Dr. Oksala. "PSA is known to correlate positively with prostate volume, which is a potential source of diagnostic error when comparing prostate cancer with benign disease. According to our current analysis, prostate volume did not affect the eNose results, potentially indicating high specificity of our sensor array to cancer. We also studied whether eNose signal correlates with the size of the tumor. No such correlation was found. Further studies are now warranted to enhance current technology and to identify the molecules behind the distinct odors."

Linda Gruner | Eurek Alert!
Further information:
http://www.elsevier.com

Further reports about: Department Electronic Elsevier Health PSA Results progression prostate volume

More articles from Medical Engineering:

nachricht A first look at interstitial fluid flow in the brain
05.07.2018 | American Institute of Physics

nachricht A sentinel to watch over ocular pressure
04.07.2018 | Fraunhofer Institute for Microelectronic Circuits and Systems

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>