Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electrode shape improves neurostimulation for small targets

25.04.2018

A cross-like shape helps the electrodes of implantable neurostimulation devices to deliver more charge to specific areas of the nervous system, possibly prolonging device life span, says research published in March in Scientific Reports.

The shape, called "fractal," would be particularly useful for stimulating smaller areas, such as deep brain structures or the retina, since it maximizes perimeter within a smaller surface area - providing the higher resolution needed for restoring bodily functions and potentially enabling neurostimulation devices to last longer in the body without a recharge.


This small chip holds a 2-D electrode with a shape that can better stimulate small targets in the body over time.

Credit: Purdue University image/Kayla Wiles

"There are challenges with shrinking the size of these electrodes," said Hyowon "Hugh" Lee, assistant professor of biomedical engineering. "If you shrink them too small, then you can't inject enough energy to be able to activate the underlying substrate."

Industry currently produces circular or rectangular electrodes for neurostimulation devices. "There's really no reason to maintain these shapes other than the fact that it makes it easier for the conventional manufacturing techniques to facilitate," Lee said.

"But microfabrication allows batch processing or even more scalable roll-to-roll fabrication, in which we have the design freedom to create any type of electrode design with high resolution to improve their functionality."

Lee's lab experimented with other shapes that could better inject charge with electrode size limitations. The fractal shape outperformed conventional shapes and the "serpentine," or snake-like shape, even though it has a similar perimeter to surface area ratio as fractal. This could be because the repeating patterns of the fractal design better facilitate the continuous diffusion of charge transfer species, or reactants, to the platinum electrode surface.

"When you have a lot more diffusion of species to the surface, it allows for faster Faradaic charge transfer from the electrode surface," Lee said. The charge then reaches a threshold on neurons to trigger an action potential, or electrochemical signal, to stimulate a target.

Because fractal designs also feature lower impedance than conventional electrodes, they could allow more charge to be injected onto an electrode surface over time and extend the life span of neurostimulation devices. "If you have less load, meaning it takes less energy to get the same effect, then the fixed battery life of implantable stimulation devices is going to be improved," Lee said.

The next step is to test the robustness and longevity of fractal designed-electrodes in comparison to conventional shapes. Lee's lab is also looking into using the fractal design for improving sensitivity in devices such as biosensors. "The goal would be better control of stimulation over targeted areas and more pinpointed therapy," Lee said.

###

ABSTRACT

Electrochemical evaluations of fractal microelectrodes for energy efficient neurostimulation
Hyunsu Park1, Pavel Takmakov2, Hyowon Lee1
1Purdue University, West Lafayette, IN, USA
2White Oak Federal Research Center, Silver Spring, MD, USA
doi: 10.1038/s41598-018-22545-w

Advancements in microfabrication has enabled manufacturing of microscopic neurostimulation electrodes with smaller footprint than ever possible. The smaller electrodes can potentially reduce tissue damage and allow better spatial resolution for neural stimulation. Although electrodes of any shape can easily be fabricated, substantial effort have been focused on identification and characterization of new materials and surface morphology for efficient charge injection, while maintaining simple circular or rectangular Euclidean electrode geometries. In this work we provide a systematic electrochemical evaluation of charge injection capacities of serpentine and fractal-shaped platinum microelectrodes and compare their performance with traditional circular microelectrodes. Our findings indicate that the increase in electrode perimeter leads to an increase in maximum charge injection capacity. Furthermore, we found that the electrode geometry can have even more significant impact on electrode performance than having a larger perimeter for a given surface area. The fractal shaped microelectrodes, despite having smaller perimeter than other designs, demonstrated superior charge injection capacity. Our results suggest that electrode design can significantly affect both Faradaic and non-Faradaic electrochemical processes, which may be optimized to enable a more energy efficient design for neurostimulation.

Media Contact

Kayla Wiles
wiles5@purdue.edu
765-494-2432

 @PurdueUnivNews

http://www.purdue.edu/ 

Kayla Wiles | EurekAlert!
Further information:
http://www.purdue.edu/newsroom/releases/2018/Q2/electrode-shape-improves-neurostimulation-for-small-targets.html
http://dx.doi.org/10.1038/s41598-018-22545-w

More articles from Medical Engineering:

nachricht A 15-minute scan could help diagnose brain damage in newborns
15.11.2018 | Imperial College London

nachricht NIH scientists combine technologies to view the retina in unprecedented detail
14.11.2018 | NIH/National Eye Institute

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>