Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An easier way to remove gallstones

18.01.2012
For more than 100 years, the traditional treatment for the painful growths called gallstones has been removal of the gallbladder, or cholecystectomy.

But a new device, patented in China, promises to make removing the entire organ unnecessary. A group of scientists from the Second People's Hospital of Panyu District and Central South University in China have developed an endoscope specially designed for locating and clearing out gallstones and other gallbladder lesions.

The authors describe the device in a paper accepted to the AIP's Review of Scientific Instruments. A tiny ultrasonic probe at the tip of the endoscope locates gallstones, even small ones embedded in the organ's lining.

Surgeons can use the horn-shaped "absorbing box" to get rid of fine, difficult-to-remove "sludge-like" gallstones – which the authors say can be compared with "sand sprinkled on a carpet" – by sucking them out like a vacuum cleaner. A channel for fluids can inject water into the gallbladder to increase the size of the cavity for ease of performing a surgery, and all the interfaces on the device are standardized, so it can connect to camera systems worldwide.

Clinical trials at two hospitals showed "no significant difference" in the surgical safety of the new method compared to another type of endoscope that is often used for cholecystectomies, the authors write.

Furthermore, the authors report, the flexibility and reliability of the device was superior to existing devices, and the image quality was better as well. Approximately ten percent of the population suffers from gallstones, hard, pebble-like deposits that can be as small as a grain of sand or as large as a golf ball.

Article: "Design and application of a new series of gallbladder endoscopes that facilitate gallstone removal without gallbladder excision" is accepted for publication in the Review of Scientific Instruments.

Authors: Tie Chiao (1), Wan-Chao Huang, Xiao-Bing Luo, and Yan-De Zhang.

(1) The Second People's Hospital of Panyu District, China
(2) The National Hepatobiliary and Enteric Surgery Research Center, Central South University, China

Jennifer Lauren Lee | EurekAlert!
Further information:
http://www.aip.org

More articles from Medical Engineering:

nachricht LISA: Scientists introduce a new method of statistical inference in neuroimaging (fMRI)
16.10.2018 | Max-Planck-Institut für biologische Kybernetik

nachricht Researchers demonstrate first example of a bioelectronic medicine
09.10.2018 | Northwestern University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>