Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computerized mobile health support systems

24.02.2009
Assistance for patients: Intelligent sensor networks monitor important vital signs of patients or measure their activity. Fraunhofer researchers are presenting the new systems at CeBIT 2009 in Hannover in Hall 9, Stand B36.

Poor sleep can be attributed to many causes, including shift work, stress, snoring or even sleep apnea – a disorder in which the sleeper temporarily stops breathing. Until now, only a sleep laboratory could determine whether a patient is suffering from sleep apnea or related sleep disturbances.

In a traditional sleep laboratory, the patient is observed while sleeping for at least one night, connected to cables and observed by a large number of measuring instruments and cameras. Researchers at the Fraunhofer Institute for Integrated Circuits IIS in Erlangen have now developed a mobile sleep lab for home use.

SomnoSENS consists of a small box that is worn attached to the body during sleep and observes vital functions. Four adhesive electrode pads are used to record an electrocardiogram (ECG), while a finger clip measures the patient’s blood oxygen level and pulse rate. A nasal clip and expandable belts around the upper torso monitor breathing, and a movement sensor in the device identifies the patient’s body position and registers how much he or she moves. “The device is attached to the body during sleep and does not hinder sleep comfort due to its miniature size,” Herbert Siegert from IIS assures. “SomnoSENS records and stores the data, and transmits them to the base station via a Bluetooth wireless interface. The physician can later evaluate the stored information to make an evidence-based diagnosis.”

SYSvital – Assistance for heart patients
Patients with cardiovascular problems are often fearful of suffering another heart attack or developing other heart complications. They cannot visit the doctor daily to gain assurance about their condition. The SYSVital telemonitoring device devised by the Fraunhofer Institute for Photonic Microsystems IPMS in Dresden offers assistance to patients with heart problems.

Heart patients simply wear a small, lightweight device on their body. It records heartbeats via a 3-channel ECG, identifying minimum and maximum heart rates as well as arterial fibrillation. At the same time, the device records movement. A physician can evaluate, for instance, the heart rate in connection with physical effort, thus simplifying the diagnosis. The system also permits recovery time to be determined after physical exercise. The data are transferred via a home gateway to an Internet portal where the physician can access the information remotely. A range of optional components can be added to the system to measure other vital data such as blood pressure, weight or blood sugar level.

ActiSENS – Keeping active
Experts recommend physical exercise in order to prevent illness. But how many people manage to exercise regularly? Perhaps it might be enough to stay fit by walking to the subway, climbing the stairs to the third floor or doing household chores? A new device can determine how active we actually are. “ActiSENS measures a person’s physical activity throughout the day,” Herbert Siegert of the Fraunhofer Institute for Integrated Circuits IIS in Erlangen explains. The user merely needs to attach a small box containing movement sensors to their belt. The device translates activities into points to provide objective feedback regarding the user’s personal level of physical exercise. Points are awarded on the basis of the type of activity: Climbing stairs earns more points than jogging, jogging more than walking, and so on. Zero points are awarded for driving or taking the elevator.

During the day, the current score can be displayed on the device at any time. In the evening, the accumulated data for the day can be transferred to a PC via Bluetooth and analyzed in greater depth according to previously selected parameters. The data can also be forwarded to a physician for evaluation. In this way it can be determined, for example, whether a patient’s prescribed physical therapy is producing the desired results.

Herbert Siegert | Fraunhofer Gesellschaft
Further information:
http://www.iis.fraunhofer.de

More articles from Medical Engineering:

nachricht Can radar replace stethoscopes?
14.08.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Novel PET imaging method could track and guide therapy for type 1 diabetes
03.08.2018 | Society of Nuclear Medicine and Molecular Imaging

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>